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a b s t r a c t 

Aspect-based sentiment analysis aims at identifying sentiment polarity towards aspect targets in a sen- 

tence. Previously, the task was modeled as a sentence-level sentiment classification problem that treated 

aspect targets as a hint. Such approaches oversimplify the problem by averaging word embeddings when 

the aspect target is a multi-word sequence. In this paper, we formalize the problem from a different per- 

spective, i.e., that sentiment at aspect target level should be the main focus. Due to the fact that written 

Chinese is very rich and complex, Chinese aspect targets can be studied at three different levels of gran- 

ularity: radical, character and word. Thus, we propose to explicitly model the aspect target and conduct 

sentiment classification directly at the aspect target level via three granularities. Moreover, we study two 

fusion methods for such granularities in the task of Chinese aspect-level sentiment analysis. Experimental 

results on a multi-word aspect target subset from SemEval2014 and four Chinese review datasets validate 

our claims and show the improved performance of our model over the state of the art. 

© 2018 Elsevier B.V. All rights reserved. 

1

 

p  

b  

t  

i  

a  

t  

b  

m

 

s  

o  

t  

t  

p  

c  

a  

s

 

s  

w  

b  

[  

t  

c  

 

l  

[  

r  

t  

[  

A  

p  

t  

“  

f  

p  

i  

A  

y  

c  

v  

h

0

. Introduction 

In recent years, sentiment analysis has become increasingly

opular for processing social media data on online communities,

logs, wikis, microblogging platforms, and other online collabora-

ive media [1] . Sentiment analysis is a branch of affective comput-

ng research [2] that aims to classify text – but sometimes also

udio and video [3] – into either positive or negative – but some-

imes also neutral [4] . Most of the literature is on English language

ut recently an increasing number of publications is tackling the

ultilinguality issue [5] . 

Sentiment analysis techniques can be broadly categorized into

ymbolic and sub-symbolic approaches: the former include the use

f lexicons [6] , ontologies [7] , and semantic networks [8] to encode

he polarity associated with words and multi-word expressions;

he latter consist of supervised [9] , semi-supervised [10] and unsu-

ervised [11] machine learning techniques that perform sentiment

lassification based on word co-occurrence frequencies. There are

lso a few hybrid approaches [12] that leverage an ensemble of

ymbolic and sub-symbolic techniques for polarity detection. 

Sentiment analysis has raised growing interest both within the

cientific community, leading to many exciting open challenges, as
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ell as in the business world, due to the remarkable benefits to

e had from financial [13] and political [14] forecasting, e-health

15] and e-tourism [16] , user profiling [17] and community detec-

ion [18] , manufacturing and supply chain applications [19] , human

ommunication comprehension [20] and dialogue systems [21] , etc.

While most works approach it as a simple categorization prob-

em, sentiment analysis is actually a suitcase research problem

22] that requires tackling many NLP tasks, including named-entity

ecognition [23] , word polarity disambiguation [24] , concept ex-

raction [25] , subjectivity detection [26] , personality recognition

27] , sarcasm detection [28] , and especially aspect extraction [29] .

spect-based sentiment analysis (ABSA) proposes a finer-grained

olarity detection that extracts aspects first and then classifies

hem as either positive or negative. For example, in the sentence

The size of the room was smaller than our expectation but the view

rom the room would not make you disappointed. ”, sentiments ex-

ressed towards “room size ” and “room view ” are negative and pos-

tive, respectively. Those two terms are called aspect terms and

BSA associates a polarity to each aspect term. Another similar

et different sub-task of ABSA is sentiment analysis towards aspect

ategory. For example, both “room size ” and “room view ” in the pre-

ious example belong to “ROOM_FACILITY”. Other aspect categories

n this domain are like “PRICE”, “SERVICE” and so on. The work of

ang et al. [30] belongs to this sub-task. 

In this paper, we focus on aspect term sentiment classification,

hich is a finer grained study compared to the work of Wang et al.

https://doi.org/10.1016/j.knosys.2018.02.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2018.02.034&domain=pdf
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Table 1 

Comparison between English and Chinese text in composition. 

English Chinese 

Hierarchy Example Encodes semantics Hierarchy Example Encodes semantics 

Character a, b, c, ... N Radical � , �, � Y 

Character N-gram pre, sub partial Y Character �, �, � Y 

Word awake, cheer Y Single-character word � , � Y 

Phrase kick off, put on Y Multi-character word �� , � �� Y 

Sentence Nice to meet you. Y Sentence ���� � �� � Y 
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We define aspect term as aspect target. If an aspect term contains

multiple words, we call this type of aspect term as aspect tar-

get sequence. In aspect target sentiment classification, Tang et al.

[31] used target dependent a long short-term memory (LSTM) net-

work. In particular, they use a Bi-LSTM model to encode the se-

quential information in TC-LSTM. They later appended each word

with target embedding to reinforce the extraction of correlation

between target and context words in the sentence. In [32] , they de-

signed a pure attention-based memory network to explicitly learn

the correlation between context words and aspect target. Never-

theless, they simply used average aspect word embedding to rep-

resent aspect term, which failed to consider the aspect target se-

quence information. Wang et al. [30] employed an attention mech-

anism upon the sequential output from a LSTM layer. Their work

treated the sentence sequential information as equal importance to

aspect target sequential information. 

All the previous work modeled ABSA as a sentence-level sen-

timent classification problem that treated aspect target/term as a

hint. Such design will result in a dilemma when there appear two

aspect targets with opposite sentiment polarities in the same sen-

tence. All state-of-the-art works only focused on one aspect target

at a time. They cannot process two aspect targets at the same time,

due to the assumption that sentiment of a sentence is equivalent

to the sentiment of aspect target/term. Moreover, little attention is

paid to aspect target itself, especially when aspect target is a se-

quence of words, namely multi-word aspect. Almost all literature

took the average word embeddings to represent aspect target se-

quence, which ignored aspect target sequential information. In the

English language, their models work well in situations where as-

pect target has a single word, but not in multiple words. In other

cases, although they employed a sentence-level sequence encoder,

the importance of aspect target sequence is treated with no em-

phasis compared with non-aspect word sequence. To this end, we

propose two versions of an aspect target sequence model (ATSM),

namely: ATSM-S, where -S stands for single granularity, and ATSM-

F, where -F stands for fusion. The model is available for download

at http://github.com/senticnet/aspect-target-sequence-model . 

ATSM-S explicitly addresses to the multi-word aspect target

case. The model includes two crucial modules: adaptive embed-

ding learning and aspect target sequence learning. The first mod-

ule aims at appending sentence context meaning to general word

embeddings for each of the aspect target words. Thus, an accu-

rate vector representation which encoded sentence context will

be obtained for aspect target words. Specifically, we extract sen-

tence context with a LSTM encoder. Each aspect target word was

attended by the encoded context to form an adaptive word em-

bedding. The second module links each adaptive aspect word em-

bedding with a sequence learning. In the experimental comparison,

our ATSM-S outperforms the state of the art on an English multi-

word aspect subset filtered from SemEval 2014 and four Chinese

review datasets. 

Although ATSM-S only solves part of the problems (multi-word

aspect scenario) in English ABSA, it becomes comprehensive in ad-

dressing Chinese ABSA if considering the multi-granularity repre-

sentation of Chinese text. 
q  
Chinese is a pictogram language whose text originates from im-

ges. Chinese text originates from simple symbols. The symbols

radually evolved to fixed types (named radicals). Through a ge-

metric composition, those fixed types build up characters. Then a

oncatenation of characters creates the word. Unlike English, each

hinese sub-word granular representation still encodes semantics,

hown in Table 1 . Whereas in English, only partial character N-

rams encode semantics. This motivates us to explore each gran-

larity of Chinese text in ABSA. In addition, the surface form of

hinese text is at the character level. This guaranteed that even

he smallest aspect target, such as a single Chinese character, can

e broken down into a sequence of aspect targets at the radical

evel. Thus, we proposed ATSM-F as an upgraded version of ATSM-

. Specifically, ATSM-S was conducted at each Chinese granularity

nd ATSM-F fused their results together. In the design of fusion,

e tested both early fusion (hierarchical structure) and late fusion

flat structure). Finally, ATSM-F with late fusion prevails all other

ethods on three out of four Chinese review datasets. To round

p, we made the following contributions: 

1. We view aspect-level sentiment analysis from a new perspec-

tive, in which aspect target sequence dominates the final result.

Whereas in recent literature using deep learning, sentence-level

classification is the popular solution [30–32] . 

2. Starting from our perspective, we propose the adaptive embed-

ding learning to append sentence context to aspect targets. Fol-

lowed by an explicit modeling of aspect target sequence. Re-

sults on English multi-word aspect subset from SemEval2014

and four Chinese review datasets validate the superiority of our

model. 

3. We take advantage of the multi-grained representation nature

of Chinese text and improve the final performance further,

which suggests a broader application scenario. 

. Related work 

.1. Aspect-based sentiment analysis 

In ABSA, there are three research directions. The first direc-

ion is aspect term extraction, such as [33,34] . The second direc-

ion aims at categorizing the given aspect term to different cate-

ories [35,36] . Wang et al. [30] employed an attention mechanism

pon the sequential output from a LSTM layer. Their work aims at

redicting sentiment polarity of the category, such as “FOOD” and

PRICE”, rather than any particular aspect terms. 

The third branch works on aspect term sentiment classification.

spect term is usually marked in a sentence and the goal is to

etermine the sentiment polarity towards the aspect term. Early

orks used dictionary-based methods [37,38] . Recent works em-

loyed machine learning-based feature engineering and classifica-

ion [39,40] . 

Most state-of-the-art works used a LSTM network [41] and at-

ention mechanism as the basic modules in their methods [31,32] .

ang et al. used target dependent Bi-LSTM model to encode the se-

uential information in TC-LSTM. They later appended each word

http://github.com/senticnet/aspect-target-sequence-model
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ith target embedding to reinforce the extraction of correlation

etween target and context words in the sentence. In MemNet

32] , they designed a pure attention-based memory network to

xplicitly learn the correlation between context words and aspect

ords. 

Previous works on aspect-term sentiment analysis suffered

rom two main drawbacks. Firstly, ABSA is modeled as a sentence-

evel sentiment classification problem that treated aspect tar-

et/term as a hint. Such design will result in a dilemma when

here appear two aspect targets with opposite sentiment polari-

ies. All state-of-the-art works only focused on one aspect target at

 time. They cannot process two aspect targets at the same time,

ue to the assumption that sentiment of a sentence is equivalent

o the sentiment of aspect target/term. Secondly, little attention is

aid to aspect target itself, namely aspect target sequence informa-

ion. In this paper, we aim to address these two drawbacks. 

.2. Chinese text representation 

Contemporary Chinese text processing mostly relies on Chinese

ord embeddings [42,43] . However, Chinese word consists sub-

lements like characters that contain semantics. Xu et al. [44] stud-

ed characters within a word can enrich semantics for Chinese

ord and character embeddings. Chinese text has one level be-

ow character level, which is radical level. It has been demon-

trated that radical level representation also encodes certain ex-

ent of semantics [45] . Chen et al. [46] started to decompose Chi-

ese words into characters and proposed a character-enhanced

ord embedding model (CWE). Sun et al. [47] started to de-

ompose Chinese characters to radicals and developed a radical-

nhanced Chinese character embedding. Shi et al. [45] began to

rain pure radical-based embedding for short-text categorization,

hinese word segmentation, and web search ranking. Li et al.

48] proposed component-enhanced Chinese character embedding

odels by incorporating internal compositions and the external

ontexts of Chinese characters. Yin et al. [49] extended the pure

adical embedding in [50] by introducing multi-granularity Chi-

ese word embeddings. Peng et al. [51] developed radical-based

ierarchical Chinese embeddings specifically for sentiment analy-

is. However, none of them has exploited the multi-grained char-

cteristic of Chinese text in complex NLP problems, such as ABSA. 

. Method overview 

In this section, we first define our task and then present an

verview of the proposed method. 

.1. Aspect target sequence 

Aspect is a concept that contains various interpretations, such

s aspect target/term, aspect word, aspect category, aspect sen-

iment etc. For instance, a sentence “��� � ��� (This cui-

ine has a good flavor.)” has an aspect target/term “�� (flavor)”.

he aspect target contains only one aspect word, which is “�

 (flavor)”. The aspect target belongs to an aspect category of

FOOD”. Other aspect categories in the domain of restaurant are

ike “PRICE”, “SERVICE” and so on. The sentiment of the aspect tar-

et “�� (flavor)”is positive in the sentence. 

However, in the context of this paper, we define aspect as as-

ect target sequence. As Chinese text can be decomposed to three

ranularities, a single unit of higher level representation can be de-

omposed to a sequence of units of lower level representation. For

nstance, the single-word aspect target “�� (flavor)” in the pre-

ious example can be decomposed to a sequence of Chinese char-

cters: “� ” and “� ”. Moreover, the characters can be further de-

omposed to a sequence of Chinese radicals: “�”, “� ”,“�” and
�”. As [44,49,51] suggested, various granularities contain exclu-

ive semantics. In the above example, “�� ” at word level simply

eans ‘flavor’. “� ” and “� ” at character level mean ‘thinking of

he flavor’. “�”, “� ”,“�” and “�” at radical level mean ‘to taste

he unknown and brainstorm the flavor’. It is apparent to see from

he example that sub-component semantics provide complemen-

ary explanations to the word and, hence, enrich its meaning. We

econstruct an aspect target as three sequences at three granulari-

ies. Methods were developed to work on these sequences in order

o determine the sentiment polarity of the aspect target. 

.2. Task definition 

A sentence s of n units (the unit could be radical, character or

ord) in the format s = { u 1 , u 2 , . . . , u j , u j+1 , . . . , u j+ L , . . . , u n −1 , u n }
s marked out with aspect target (comprising multiple

nits) { u j , u j+1 , . . . , u j+ L } . The u j+ L stands for the ( j + L ) th unit

n the sentence and the L th unit in the aspect target. L indicates

hat the aspect target contains L consecutive units. The goal is to

redict the sentiment polarity of the aspect target. 

.3. Overview of the algorithm 

In all previous works of ABSA [30–32] , if an aspect target con-

ains multiple words, they treated the multi-word aspect as one

nified target by averaging their word embeddings. This is disad-

antageous in two ways. Firstly, word embeddings of aspect target

hat were trained from general corpus might mislead the mean-

ng of aspect target in the sentence. Secondly, sequential informa-

ion within the aspect target is lost. For instance, a sentence “The

ed apple released in California last year was a disappointment. ” con-

ains an aspect target “red apple ”. Based on the occurrence of “re-

eased in California”, we can understand that “red apple ” stands

or iPhone. If general word embeddings of “red ” and “apple ” were

sed in the task, it will deviate from the symbolic meaning of

Phone to fruit apple. To make it worse, by averaging the word

mbeddings of “red ” and “apple ”, sequential information is lost

nd the averaged word embedding will result in a new/irrelevant

eaning in the word vector space. 

In order to address the above two issues, we propose a three-

tep model. The first step is adaptive embedding learning, which

ssentially aims at learning intra-sentence context for each unit

n the aspect target sequence. It was designed to embed intra-

entence contexts to the general embeddings of units in aspect

arget sequence, which will resolve the first issue aforementioned.

he second step is simply a sequence learning process of aspect

arget, which has never been addressed before. Last but not the

east, Chinese text has three granularities of representation (rad-

cal, character and word) so that we apply the first two steps at

ach of the three granularities and glue them together with fu-

ion mechanisms. This is particular for Chinese text, as even single

ord aspect target can be decomposed to up to three sequences

f representation. Fig. 1 presents a graphical illustration of ATSM-

 in late fusion. In English, however, our model only applies to

ases where aspect target contains multiple words. We will illus-

rate each of the three steps below. 

. Adaptive embedding learning 

.1. Sentence sequence learning 

Sequential information is crucial in determining aspect term

entiment polarity. For example, there are two sentences: “The

ovie supposed to be amazing but I find it just so-so. ” and “The

ovie supposed to be just so so but I find it amazing. ” These two

entences have exactly same words but arranged in a different
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Fig. 1. ATSM-F late fusion framework. RNN-1,-2,-3 are at word, character and radical level, respectively. Green RNNs are for adaptive embedding learning. Grey RNNs are 

sequence learning of aspect target. Aspect target is highlighted in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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order. This results in the opposite sentiment polarity of the as-

pect target “The movie ”. In order to extract sentence sequential

information like the above, we use a LSTM to encode the sen-

tence sequential information. The output of the LSTM is a se-

quence of cell hidden outputs which has the same length of the

sentence. Mathematically, a sentence and its corresponding LSTM

sequence output are denoted as { w 1 , w 2 , . . . , w j , . . . , w n −1 , w n }
and { h 1 , h 2 , . . . , h j , . . . , h n −1 , h n } , respectively, where w n ∈ R 

1 ×d and

h n ∈ R 

1 ×d lstm . 

4.2. Aspect target unit learning 

As we discussed before, the meaning of aspect target word may

be shifted due to the sentence context, such as the example of

“red apple ”. Thus, we decide to embed the intra-sentence contexts

to each unit in the aspect target. To this end, we employ an at-

tention mechanism to realize the learning. As we know from Bah-

danau et al. [52] , the attention mechanism can be understood as a

weighted memory of lower-level elements. Conceptually, the out-

put attention vector extracts the correlation between query (in our

case which is the unit in aspect target) with each element. In our

model, we compute an attention for each unit in aspect target with

LSTM sequence hidden output from sentence sequence learning

and name it adaptive vector. Thus, the adaptive vector extracts the

most relevant correlation with intra-sentence context. 

Specifically, for an aspect target unit u i and its word embed-

ding v i ∈ R 

1 ×d in a sentence of length n , its adaptive vector V adapt ∈
R 

1 ×(d+ d lstm ) is given as below: 

 adapt = 

n ∑ 

j=1 

α j ·
[

v i 
h j 

]
(1)

where h j ∈ R 

1 ×d lstm is the j th output from LSTM hidden output se-

quence. αj is the weight for the j th memory in the sentence and∑ n 
j=1 α j = 1 . It depicts how much the semantic influence of the

j th unit imposed on the aspect target unit u . It is a weight com-
i 
uted from softmax below: 

j = 

e g j ∑ n 
m =1 e 

g m 
(2)

here g j is a score obtained from a feed-forward neural network

ttention model and its formula is given as: 

 j = tanh 

(
W j ·

[
v i 
h j 

]
+ b 

)
(3)

here W ∈ R 

(d+ d lstm ) ×1 and b ∈ R 

1 ×1 . 

We compute the adaptive vector for each unit in aspect target.

n the end, we will get as many adaptive vectors as the number of

spect target units. Each of these adaptive vectors concentrates the

nfluence that sentence context imposed on aspect target, namely

t enriches the semantic meaning of aspect target by extracting

orrelation from intra-sentence context. For instance, the meaning

f “apple ” in our previous example. 

. Sequence learning of aspect target 

Having obtained the adaptive vector of each aspect target unit,

e will extract the sequential information in aspect target se-

uence. We find that sequential information within aspect target

equence is crucial in representing the meaning of an aspect tar-

et. Recall the previous example of “red apple ”. Only by connect-

ng “red ” and “apple ” will we have a complete impression of the

ew iPhone 7 in red coating. Isolating the two aspect words will

e harmful. Therefore, we employ the second LSTM neural network

41] to encode such sequential information. 

Specifically, we concatenate the adaptive vector of each aspect

arget unit to form an aspect target sequence. This sequence will

e fed to a LSTM as input. In the end, we take out the hidden

utput H L from the last LSTM cell as the representation of aspect

arget sequence. 
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. Fusion of multi-granularity representation 

Unlike Latin languages such as English, Chinese written lan-

uage is a type of pictogram, where its primitive forms symbol-

ze certain meanings, such as characters ‘ � (sun)’ and ‘ � (moon)’.

ith time went by, more complex meanings need to be repre-

ented in text. Thus, certain simple characters cluster together to

orm complex characters. For instance, ‘ � (shining)’ composed of

wo sub-element characters ‘ � (sun)’ and ‘ � (moon)’. The seman-

ic relation between is both ‘ � (sun)’ and ‘ � (moon)’ emit light

nd bring brightness. Simple characters like ‘ �’ and ‘ �’ were thus

alled ‘radical’ when they appear in constructing complex char-

cters. In order to represent abstract meanings, certain complex

haracters were clustered to form words. For instance, word ‘ �

(celebrity)’ composed of character ‘ � (shining)’ and ‘ � (star)’. 

elebrities are shining stars in a sense. 

Due to the above reasons, we understand modern Chinese text

an be represented at three different granularities: radical, charac-

er and word. Inspired by Peng et al. [51] , we represent Chinese

ext at three different granularities in our model and study the

ossible outcomes by fusion any of them. 

In order to fit Chinese text into our deep learning framework,

e represent Chinese text with embedding vectors. Particularly, we

se the skip-gram model [53] to learn the embedding vectors at

ifferent granularities. Our training corpus contains about 8 mil-

ion Chinese words, which is equal to 38 million Chinese characters

r 150 million Chinese radicals. For word embedding vectors, we

onduct word segmentation on the corpus using ICTCLAS [54] seg-

enter and then train with the skip-gram model. For character

mbedding vectors, we split each word in the corpus to individual

haracters, in which we still keep the order of characters. For radi-

al embedding vectors, we decompose each character into radicals

nd concatenate them in the order from left to right. The decom-

osition was based on a Chinese character-radical look-up table we

uilt using the Chinese character parser ‘HanziCraft 1 ’. 

We design two fusion mechanisms (early and late) to merge

hree granularities. Early fusion concatenates different granularities

f each aspect unit before aspect target sequence learning. Specif-

cally, each aspect target word was represented by a concatena-

ion of its sub-granular representations before it was sent to aspect

arget sequence learning. The output from aspect target sequence

earning step will be fed to a softmax classifier. 

Late fusion concatenates different granularities after aspect tar-

et sequence learning. Thus, for each granularity, an aspect target

equence representation will be obtained first. These representa-

ions will be concatenated and fed to a softmax classifier. 

.1. Early fusion 

We have already proposed the fundamental model ATSM-S for

BSA. However, the performance of the model should largely de-

end on the representation of text because the embedding vectors

re the initial input to the model. To this end, we plan to incor-

orate the multi-level representation of Chinese text. ATSM-S em-

hasizes the role of word level of representation. We incorporate

ulti-level representation for aspect word to further improve the

ccuracy of aspect words. Instead of using only word level repre-

entation in ATSM-S, we explore using either two or three level of

epresentation, namely radical, character and word level. 

Specifically for each sentence, we construct three types of sen-

ence strings: a word string, a character string, and a radical string.

n each of the string, aspect words are decomposed into the corre-

ponding level. For each unit in the decomposed string of aspect
1 http://hanzicraft.com . 
ords, it will learn an attention vector between the whole sen-

ence string. For example, given an aspect word ‘ �� (craftsman-

hip)’. One word attention vector will be learned from the word

tring. Two character attention vectors will be learned from the

haracter string because the aspect word contains two characters,

 �’ and ‘ � ’. Three radical attention vectors will be learned due to

he aspect word can be decomposed into three radicals, ‘ �’, ‘ � ’

nd ‘ � ’. Then, we compute an average attention vector for each

epresentation level. Three resulting average attention vectors will

e concatenated and will be treated as a fusion of multi-level rep-

esentation. As this fusion is a feature level fusion for aspect term,

e call this fusion the early fusion. The fusion attention vector will

e fed to a LSTM like in ATSM-S. The final output from the LSTM

ill be fed to a softmax classifier. Graphical illustration is in Fig. 2 .

.2. Late fusion 

Unlike the early fusion, where the fusion takes place at the fea-

ure level, in late fusion, the fusion of multi-level representation

appens at classification step. 

In late fusion, our ATSM-S is used intact at three different lev-

ls independently. As shown in Fig. 2 (b), the green break line box

tands for ATSM-S working at the word level. While the purple box

tands for working at the character level and the blue box stands

or working at the radical level. We take out the last LSTM hidden

utput from each level and concatenate them. The resulting con-

atenated vector will be fed to a softmax classifier. 

Late fusion differs from early fusion in assuming that seman-

ics within a sentence should be unified at representation level. In

ther words, the semantics of aspect terms at a single level can

ardly help extract semantics at other representation levels. Thus,

n late fusion, the ATSM-S works merely on one level at a time and

ombines at final classification step only. 

. Evaluation 

In this section, we present our evaluations in three steps. The

rst step will conduct experimental evaluations of various meth-

ds to model aspect target sequence, as well as adaptive embed-

ing learning. The second step will compare the proposed ATSM-S

ith the state of the art. The last step will evaluate the improve-

ent by fusions of granularities. We used Tensorflow and Keras to

mplement our model. All models used AdagradOptimizer with a

earning rate of 0.1 and a L2-norm regularizer of 0.01. Each mini-

atch contains 50 samples. We report the average testing results of

ach model for 50 epochs in 5-fold cross validation. 

.1. Datasets 

Four Chinese datasets from four domains were used in our ex-

eriments 2 . They are Chinese aspect datasets we collect from [55] .

hey contains reviews in four domains: notebook, car, camera, and

hone. Aspect targets were originally tagged by Zhao et al. [56] .

hen, we manually labeled the sentiment polarity towards each

spect target as either positive or negative. The metadata of the

ataset was displayed in Table 2 . English dataset used in our ex-

eriments was a subset from the SemEval2014 [57] , which contains

eviews from two different domains: restaurant and laptop. We se-

ect the reviews which contain multi-word aspect target only and

esults in a subset of 2309 reviews (30% of the original dataset). 
2 Datasets download at: http://sentic.net/chinese-review-datasets.zip . 

http://hanzicraft.com
http://sentic.net/chinese-review-datasets.zip
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Fig. 2. Fusion mechanisms. 

Table 2 

Metadata of Chinese dataset. 

Notebook Car Camera Phone Overall 

Positive 417 886 1558 1713 4574 

Negative 206 286 673 843 2008 

Percentage of multi-word aspect 38.20 36.95 44.55 40.49 41.02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2. Comparison methods 

In our experiments, we include three types of baseline compar-

isons. The first type includes the self-variants of ATSM-S, which ex-

amines the validity of each module of our model. The second type

is the state-of-the-art methods in ABSA task, which tests the over-

all performance. The last type explores how the fusion of multi-

grained representation of Chinese will affect the ABSA task. 

7.2.1. Variants of ATSM-S 

As there are two major modules of ATSM-S, namely adaptive

embedding learning and sequence learning of aspect target, we de-

sign different variants for either of the modules to validate its su-

periority. ATSM-v1 and ATSM-v2 were designed to examine adap-

tive embedding module. ATSM-v3, ATSM-v4 and ATSM-v5 were

designed to examine the module of sequence learning of aspect

target. 
1. ATSM-v1 : The first variant of ATSM-S. It eliminates sentence se-

quence learning step in ATSM-S. In the following steps, it re-

places sentence level LSTM hidden state outputs with initial

word embeddings. 

2. ATSM-v2 : The second variant of ATSM-S. It removes the adap-

tive embedding learning module. Instead, it takes the sentence

level LSTM hidden state outputs of each aspect target word as

the input to aspect target sequence learning module. 

3. ATSM-v3 : The third variant of ATSM-S. It replaces the module

of aspect target sequence learning with an average of aspect

target word embeddings. It does not extract the aspect target

sequence information. 

4. ATSM-v4 : The fourth variant of ATSM-S. It opts for different

modeling of aspect target sequence. Specifically, it replaces the

LSTM at aspect target sequence level in ATSM-S with a CNN

(convolutional neural network). 
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Table 3 

Variants of ATSM-S on Chinese datasets at word level. 

Notebook Car Camera Phone Overall 

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

ATSM-v1 69.98 62.60 80.88 55.09 78.27 66.81 80.83 68.51 81.95 77.05 

ATSM-v2 66.94 40.58 75.59 42.29 69.94 47.08 67.72 42.58 70.24 45.64 

ATSM-v3 74.15 62.04 80.71 57.24 78.09 69.49 81.65 71.59 81.89 76.47 

ATSM-v4 74.80 60.00 82.94 59.43 82.34 69.86 84.11 73.24 85.76 80.84 

ATSM-v5 73.35 58.67 79.61 56.65 78.31 68.33 80.56 70.03 82.42 77.84 

ATSM-S 75.59 60.09 82.94 64.18 82.88 72.50 84.86 75.35 85.95 80.13 

Table 4 

Accuracy and Macro-F1 results on Chinese datasets at word level. 

Notebook Car Camera Phone Overall 

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

SVM 66.92 40.09 75.60 43.04 69.83 41.11 67.02 40.11 69.49 41.00 

LSTM 74.63 62.32 81.99 58.83 78.31 68.72 81.38 72.13 82.71 78.28 

Bi-LSTM 74.15 63.09 81.82 56.42 78.35 69.35 81.45 70.42 82.22 76.93 

TD-LSTM 67.10 40.58 76.53 46.47 70.48 51.46 69.17 52.40 70.56 51.72 

TC-LSTM 68.39 50.57 76.19 50.99 70.88 54.79 69.88 54.26 70.66 53.60 

MemNet 69.10 53.51 75.55 51.01 70.59 55.13 70.29 55.93 72.86 55.99 

ATSM-S 75.59 60.09 82.94 64.18 82.88 72.50 84.86 75.35 85.95 80.13 
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5. ATSM-v5 : The last variant of ATSM-S. Unlike ATSM-v4 which

models the aspect target sequence with a CNN, ATSM-v5 con-

catenates their embeddings and feeds to a nonlinear neural

layer. 

6. ATSM-S : There are three sub-categories of this type. The first

one is ATSM-S working on the word level. The other two are

ATSM-S models working on character and radical level, respec-

tively. These three variants do not have any fusion of represen-

tation levels and, hence, serve as baselines towards our fusion

mechanism. 

.2.2. State of the art 

We include several state-of-the-art methods: SVM, LSTM, Bi-

 STM, TD-L STM, TC-L STM, MemNets and ATSM-S. 

1. SVM : SVM classifier trained on the surface and parse features,

such as unigram, bigram, POS tags. Aspect target features were

concatenated to sentence features. 

2. LSTM : The typical sequence modeling method that unveils the

sequential information from the head to the tail of the sen-

tence. It does not pay special attention to aspect term in the

sentence. For long sentences, this method leverages more on

the ending words in the sentence than the beginning words.

Thus, for the case when aspect term appears in the head of the

sentence, it may not work well. 

3. Bi-LSTM : It adds a reverse sequential learning step to LSTM. Bi-

LSTM models both head to tail and tail to head sequential infor-

mation, however, it does not distinguish the aspect term with

context words in ABSA. 

4. TD-LSTM : Instead of attending to the complete length of a sen-

tence like LSTM, TD-LSTM [31] used a forward and a backward

sequence that ends immediately after including aspect term. It

extracts sentence semantics prior and after aspect term sepa-

rately. 

5. TC-LSTM : In addition to TD-LSTM, TC-LSTM appended the sen-

tence word embedding with aspect target embedding. It hopes

this procedure could explicitly capture the interaction between

aspect word and sentence context word. Nevertheless, this

method treated the sequential information from aspect target

sequence and sentence word sequence with equal importance.

They did not model the aspect target sequence. 

6. MemNet : This method took out the aspect word and looked for

correlation with sentence context words. The problem of this
method is it did not use the sequential information within as-

pect target sequence. In our experiments on both English and

Chinese datasets, we conducted various experiments using hop

number from one to nine of this model and reported the best

results. 

.2.3. Fusion comparison 

1. ATSM-F : Based on ATSM-S, it fuses not only three representa-

tion granularities but also any two representation granularities,

in both early and late manner. There are 11 different settings in

this experiment. It evaluates whether fusion will improve from

single granularity and which combination benefits the final re-

sult most. 

nlike all the previous methods, the novelties of our model are

hree folds. Firstly, we adapt the general word embedding to ABSA

ask by encoding sentence context. Secondly, we explicitly model

he aspect target sequence. Finally, we design fusion mechanism

n ATSM-S to take advantage of three granularities of Chinese rep-

esentations. The experimental results are shown in Tables 3 , 4

nd 6 . 

.3. Result analysis 

.3.1. Self comparison 

In this section, we compare different variants of ATSM-S with

xperiments on Chinese datasets. The experimental results were

hown in Table 3 . 

We can observe that ATSM-S achieves the highest accuracy in

ll the datasets and highest F-score in three datasets. It generally

emonstrates the validity of our model design. In order to elabo-

ate more details, we conduct the comparisons with model vari-

nts. 

The only difference between ATSM-v1 and ATSM-S is that the

ormer omits sentence sequential information. The decrease of per-

ormance from ATSM-v1 proves that ATSM-S has successfully en-

oded sentence sequence. Even if the sentence sequential informa-

ion is correctly learned, the overall performance cannot be guar-

nteed. This is illustrated by ATSM-v2, which encodes sentence

equence but does not learn adaptive embedding. Since ATSM-S

earns adaptive embedding on top of ATSM-v2, a more accurate as-

ect target representation is learned and, hence, contributes to the

nal performance. 
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Table 5 

Accuracy and Macro-F1 results on single-word/multi-word aspect target subset from SemEval2014. 

ATSM-S (word) MemNet TC-LSTM TD-LSTM Bi-LSTM 

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

Multi-word aspect English dataset 65.37 36.54 58.54 42.16 63.58 43.87 63.48 47.16 62.19 45.02 

Single-word aspect English dataset 75.39 54.12 67.83 52.70 59.33 49.58 68.38 52.95 72.80 54.35 
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ATSM-v3, -v4 and -v5 distinguish with each other in the way

they model aspect target sequence. -v3 takes the average of aspect

target word embeddings, which ignores aspect target sequential in-

formation. -v4 models the aspect target sequence with a CNN. -v5

models the sequence with the middle layer from an MLP. In com-

parison, ATSM-S models the sequence with a LSTM. From the ta-

ble, we can conclude that LSTM achieves the best results compared

with other variants. It further proves our assumption that the as-

pect target sequential information plays a significant role in ABSA

task. 

7.3.2. Peer comparison 

From Table 4 , we can see that ATSM-S beats other state-of-the-

art methods by around 1–4% in all four datasets and in one overall

dataset. 

We believe the first reason why ATSM-S wins over other meth-

ods is that we explicitly learned the adaptive meaning of each as-

pect target unit. The adaptive embedding of each aspect target unit

not only carries semantics from general word embedding but also

encodes semantics within the sentence. In comparison, the base-

line model ATSM-v2 eliminates sentence sequence learning step

and, hence, results in a poor adaptive embedding. 

The second reason is that we explicitly modeled the aspect

target sequence. Other state-of-the-art works either ignored the

aspect target sequence [30,32] or treated aspect target sequence

as equal importance as sentence sequence [31] . Both of the ap-

proaches did not render enough emphasis on aspect target se-

quence. To validate its importance, we designed the second base-

line variant of ATSM-S, which is ATSM-v3. It differs from ATSM-S

only in ignoring target sequence information. The sharp decrease

of performance from ATSM-S to ATSM-v3 validated our assump-

tion. 

The difference between ATSM-S with the popular attention

model where the aspect is embedded by a LSTM layer are two-

fold. Firstly, ATSM-S specifically encodes aspect target sequential

information. Whereas attention model treated aspect target as an

averaged embedding vectors. Secondly, aspect target sequential in-

formation was given higher importance than sentence sequential

information in ATSM-S. Whereas attention model treated the two

sequences of equal importance. 

Since ATSM-S specializes in modeling aspect target sequence,

we conduct further experiments to test whether it is language in-

dependent. Thus, we removed reviews from English SemEval2014

dataset that had single-word aspect target only (eg. pasta) and col-

lected the remaining reviews that all had multi-word aspect tar-

get (eg. build quality) to form a multi-word aspect target sub-

set. Meanwhile, we also collected the removed reviews to form a

single-word aspect target subset. 

Experimental results on these two subsets were shown in

Table 5 in comparison with the top few state-of-the-art works,

namely MemNet, TC-L STM, TD-L STM, and Bi-LSTM. In the single-

word case, the proposed ATSM-S achieved the highest accuracy. It

is beyond our expectation because the module of sequence learn-

ing of aspect target from ATSM-S would not work on single-word

aspect target. On the other hand, it validates the contribution of

adaptive embedding learning module, which learns an accurate

presentation of aspect target. In the other case, the table shows
TSM-S is the best at predicting multi-word aspect sentiment po-

arity in English dataset than the state of the art. The main reason

s that our model explicitly learns adaptive embedding and aspect

arget sequence, where the latter is crucial. A visual analysis is pro-

ided in the next section. 

.4. Visual case study 

We visualize the difference between ATSM-S and a typical base-

ine model (MemNet) via a case study from English SemEval 2014

ataset. 

As shown in Fig. 3 , we plot the heatmap of attention weights.

he deeper the color is, the heavier weight the word has. Our

TSM-S has two heatmaps due to we explicitly learn adaptive

mbedding for each aspect target word (‘Korean’ and ‘dishes’).

hereas MemNet only has one, because it averages the word em-

eddings of aspect target and learns a sentence-level attention. It

s apparent that either of our aspect unit adaptive embedding cap-

ures a key opinion word in the sentence, which are ‘affordable’

nd ‘yummy’. In the later step of aspect target sequence learning,

oth of the opinion words will be captured and reflected in our fi-

al model output. Nevertheless, the heatmap from MemNet is the

nal model output, which unfortunately misses a crucial part of

he opinionated content. The case study provides an intuitive ex-

lanation of why our ATSM-S prevails. 

.5. Granularity and fusion analysis 

In the last set of experiments, we evaluated if multiple gran-

larities in Chinese text representation will improve the perfor-

ance of our model further. As shown in Table 6 , we performed

TSM-S at each of the three granularities as baselines. We also

pplied ATSM-F in both early fusion mode and late fusion mode.

he ATSM-F in late fusion of word and character level achieved

igh results in four out of five datasets. It beat ATSM-S in almost

ny single granularity situation (except word level on Car dataset.

owever, it is close to the performance of ATSM-S at word level.),

hich proved that a fusion of multiple granularities promoted the

entiment inference over single granularity. 

Generally, we could see ATSM-S at character level produces the

op few results in all single granularity cases. However, we found

hat word level performed better than character level on note-

ook and car datasets, a deeper look into those two datasets re-

ealed the possible cause of biased data distribution. After com-

uting variances of experimental results for each dataset, we found

hat the average variance of Notebook and Car dataset is 1.7 times

igger than the average variance of all five datasets at the word

evel, and 1.29 times larger than the average at the character

evel. This indicates that our model performances in these two

atasets were less robust than the other three datasets. Further-

ore, we found that the number of unique aspect target in these

wo datasets were relatively higher compared with their dataset

ize. This explains why our model did not generalize well on these

wo datasets. Moreover, due to their smaller size compared, we

elieve all the above caused the character level performed worse

han word level. In comparison, in the other three datasets, whose

ariances were well below average, character level outperformed
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Fig. 3. Visual attention weights of each word in the example. (a) is from ATSM-S. (b) is from baseline model. 

Table 6 

Accuracy results of multi-granularity with and without fusion mechanisms. (W, C, R stands for 

word, character and radical level, respectively. + means a fusion operation.) 

Notebook Car Camera Phone Overall 

ATSM-S W 75.59 82.94 82.88 84.86 85.95 

C 74.32 81.56 87.98 88.34 88.50 

R 69.92 75.68 77.19 78.09 79.87 

ATSM-F Early fusion W + C 77.52 82.16 86.55 87.13 89.38 

W + R 68.38 76.61 77.73 78.29 83.64 

C + R 69.99 77.81 80.73 80.90 87.41 

W + C + R 69.99 77.55 78.76 78.91 84.94 

Late fusion W + C 73.67 82.93 88.30 88.46 89.33 

W + R 67.26 78.23 80.68 84.94 86.43 

C + R 67.58 79.00 87.63 88.14 88.50 

W + C + R 67.91 78.15 87.98 88.07 89.30 

Fig. 4. Percentage of number of terms in corresponding to from 1 to 10 occurrences 

in three-level representation. 
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ord level with an obvious advantage. This is consistent with our

xpectation, as working at character level will wipe out the nega-

ive effects brought by word segmentation. 

It also explains why ‘W + C’ achieved the top few results. Senti-

ent information from the character level is effectively extracted

nd properly maintained with the help of effective character em-

eddings and ATSM-S. Fused with the word level information, the

haracter level sentiment information improved the overall perfor-

ance. However, working at radical level did not improve the per-

ormance much, if not exacerbating the situation. Thus, it drove

s to analyze the reason. We studied the aspect target distribution

or each of the three representation granularities with our experi-

ental datasets as examples. As shown in Fig. 4 , we plot the per-

entage of token types (i.e, unique tokens) of three different gran-

larities appearing less than 10 times in the whole dataset. It is

bvious to find that the representation of character level largely

educes the percentage of token types occurring only once in the

ord level. That is to say, character level representation signifi-
antly reduces the data sparsity of rare words by decomposing

he words into characters. This explains why character level rep-

esentation could greatly improve from word level. Radical level,

n the contrary, does not reduce much the percentage from char-

cter level. One possible reason could be the ineffectiveness of our

adical embedding vectors. In training the radical embeddings, we

id not distinguish the radicals by phoneme and morpheme. This

ay introduce errors to radical embeddings, as phonemes do not

arry semantics. These radical embeddings could affect the final re-

ults drastically. That being said, the radical level representation is

till comparable to other baseline models. It indicates the potential

f introducing radical level representation in the task of Chinese

BSA. 

We elaborate why ATSM-F in late fusion mode achieves the

op few performances as below. Our fusion mechanisms exper-

mented on possible combinations of three granularities extract

ulti-granular semantics in the task of ABSA. In comparison, late

usion has a flat structure, while early fusion has a hierarchical

tructure. Using a flat structure means the semantic encoded by

ach granularity is relatively independent. Whereas using a hierar-

hical structure breaks down the semantic flow along each granu-

arity. Because it fuses the representations of multi-granularity for

ach aspect target word, semantics at character and radical level

ere cut off by the boundary of words. 

. Conclusion 

In this paper, we investigated the problem of aspect-level sen-

iment analysis from a new perspective, in which the aspect tar-

et sequence dominates the final result. Accordingly, we proposed

TSM-S, which prevailed the state of the art in multi-word aspect

entiment analysis on SemEval2014. Moreover, our model specif-

cally catered to the multi-granularity representations of Chinese

ext. By designing a late fusion method, ATSM-F outperformed all

tate-of-the-art works in three Chinese review datasets. As one of

he first attempts to exploiting multi-granularity nature of Chinese

BSA, this work paves the path for potentially wider application

cenarios in Chinese natural language processing. 
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