
Learning Community Embedding
with Community Detection and Node Embedding on Graphs

Sandro Cavallari
Nanyang Technological University

Singapore
sandro001@e.ntu.edu.sg

Vincent W. Zheng
Advanced Digital Sciences Center

Singapore
vincent.zheng@adsc.com.sg

Hongyun Cai
Advanced Digital Sciences Center

Singapore
hongyun.c@adsc.com.sg

Kevin Chen-Chuan Chang
University of Illinois at
Urbana-Champaign

IL, USA
kcchang@illinois.edu

Erik Cambria
Nanyang Technological University

Singapore
cambria@ntu.edu.sg

ABSTRACT
In this paper, we study an important yet largely under-explored
setting of graph embedding, i.e., embedding communities instead
of each individual nodes. We find that community embedding is
not only useful for community-level applications such as graph
visualization, but also beneficial to both community detection and
node classification. To learn such embedding, our insight hinges
upon a closed loop among community embedding, community de-
tection and node embedding. On the one hand, node embedding
can help improve community detection, which outputs good com-
munities for fitting better community embedding. On the other
hand, community embedding can be used to optimize the node em-
bedding by introducing a community-aware high-order proximity.
Guided by this insight, we propose a novel community embedding
framework that jointly solves the three tasks together. We evaluate
such a framework on multiple real-world datasets, and show that
it improves graph visualization and outperforms state-of-the-art
baselines in various application tasks, e.g., community detection
and node classification.

CCS CONCEPTS
• Computing methodologies → Neural networks; Machine
learning algorithms; • Mathematics of computing → Probabilis-
tic algorithms; • Applied computing → Sociology;

KEYWORDS
community embedding, graph embedding

1 INTRODUCTION
Traditionally, graph embedding focuses on individual nodes and
aims to output a vector representation for each node in the graph,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM’17 , November 6–10, 2017, Singapore, Singapore
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4918-5/17/11. . . $15.00
https://doi.org/10.1145/3132847.3132925

(a) Karate club graph (b) Visualization based on our model

Figure 1: Embedding nodes and communities in a 2D space.

such that two nodes “close” on the graph have similar vector repre-
sentations in a low-dimensional space. Such node embedding has
been shown very successful in preserving the network structure,
and significantly improving a wide range of applications, including
node classification [5, 20], node clustering [27, 34], link predic-
tion [12, 19], graph visualization [24, 29] and more [10, 18].

In this paper, we study another important, yet largely under-
explored setting of graph embedding, which focuses on embedding
communities. Generally, a “community embedding” is a represen-
tation for a community in a low-dimensional space. Because a
community is a group of densely connected nodes, a community
embedding is expected to characterize how its member nodes dis-
tribute in the low-dimensional space. As a result, we cannot simply
define a community embedding as a vector; instead, we need to
define it as a distribution in the low-dimensional space. In Fig. 1, we
use the well-studied Karate Club graph1 as an example to demon-
strate community embedding in a 2D space. As shown in Fig. 1(a),
the Karate Club graph has 34 nodes and 78 edges. It is known that
this graph has two communities, one of which is led by a class
instructor (node 1) and the other of which is led by a club adminis-
trator (node 34) [35]. Some club members (e.g., node 9) are identified
as “weak supporters” to the two communities, thus they can belong
to both. In Fig. 1(b), we visualize the graph in the 2D space, where
each node embedding is a 2D vector.
1https://networkdata.ics.uci.edu/data.php?id=105

Session 2D: Network Embedding 2 CIKM’17, November 6-10, 2017, Singapore

377

https://doi.org/10.1145/3132847.3132925
https://networkdata.ics.uci.edu/data.php?id=105


Community Detection Community Embedding 

Node Embedding 

② 

③ ① 

Figure 2: A closed loop for learning community embedding.

Because each community is a group of densely connected nodes,
we are motivated by the Gaussian mixture model (GMM) [3] to
see each community embedding as a multivariate Gaussian distri-
bution in the 2D space. Consequently, we visualize the two over-
lapping communities in the Karate Club graph as two overlapping
eclipses, each of which is characterized by a 2D mean vector and
a 2 × 2 covariance matrix. Community embedding is useful for
many community-level applications, e.g., for community visual-
ization to help generate insights from big graphs, or community
recommendation to search for similar communities.

Learning community embedding is non-trivial. On the one hand,
to have meaningful community embedding, we first need to well
identify the communities. Then, a straightforward approach for
community embedding is to: (1) run community detection, such
as Spectral Clustering [25], on the graph to get community assign-
ments for each node; (2) apply node embedding, such as Deep-
Walk [20] or LINE [24], on the graph to get an embedding vector
for each node; (3) aggregate the node embedding vectors in each
community, so as to fit a (multivariate Gaussian) distribution as its
community embedding. Such a pipeline approach is suboptimal,
because its community detection is independent of its node embed-
ding. On the other hand, recent studies show that node embedding
often improves community detection, thanks to its well preserving
the network structure in a low-dimensional space [5, 15, 27]. Hence,
another possible approach for community embedding is to directly
run community detection over the node embedding results and,
hence, fit a (multivariate Gaussian) distribution for each community
based on its node embedding vectors. However, such an approach
is also suboptimal, because most of the existing node embedding
methods (e.g., DeepWalk [20], LINE[24] and Node2Vec [12]) are
not aware of community structure, which makes their node embed-
ding inputs suboptimal for the subsequent community detection. In
Sec. 5, we empirically evaluate both of the above approaches, and
show that their performances are limited. There is few work that
considers node embedding and community detection together; they
either require extra supervision (e.g., must-links) [34] or high com-
putational complexity (e.g., quadratic to the number of nodes in a
graph) [31]. Moreover, they under-characterize a community in the
low-dimensional space as a vector, thus it is difficult to accurately
visualize overlapping communities.

Our insight for learning community embedding is that, there
exists a closed loop among community detection, community em-
bedding and node embedding, as shown in Fig. 2. On the one hand,
as discussed earlier, node embedding can help improve commu-
nity detection (i.e., ①), which outputs good communities for fitting
meaningful community embedding (i.e., ②). On the other hand,
community embedding can be used to optimize node embedding
(i.e., ③). Suppose for a community k , we already have its commu-
nity embedding as a multivariate distribution in a low-dimensional
space. Then, we can enforce community k’s member nodes to scat-
ter closely near its community embedding’s mean vector in that

low-dimensional space. As a result, these same-community nodes
tend to have similar node embedding vectors. Compared with first-
and second-order proximity, community embedding does not re-
quire two nodes to be directly linked or share many “contexts”
for being close. Because the connections between two nodes in a
community can be high-order, we consider community embedding
as introducing a community-aware high-order proximity to node
embedding. This feedback from community embedding to node em-
bedding helps us to close the loop; hopefully the community-aware
node embedding can serve as better inputs for the subsequent com-
munity detection, thus leading to more meaningful community
embedding results.

Guided by the closed loop insight, we propose ComE, a novel
Community Embedding framework that jointly solves community
embedding, community detection and node embedding together.
We define community embedding as a multivariate Gaussian distri-
bution, and use it to empower community detection from the node
embedding results by a Gaussian mixture formulation. Denote a
graph as G = (V ,E), where V is the set of nodes and E is the set of
edges. This Gaussian mixture formulation enables us to efficiently
detect the communities and infer their community embedding dis-
tributions from G in O(|V |) time. Given community assignments
and community embedding, we extend the neural network for-
mulations of DeepWalk and LINE to preserve first-, second- and
high-order (community-aware) proximity together. For this neural
network formulation, we propose a scalable inference algorithm,
whose complexity is linear to the graph size O(|V | + |E |).

We summarize our contributions as follows.
•We introduce a novel joint modeling framework, which leverages
the closed loop among node embedding, community detection and
community embedding, to learn graph embedding.
•We contribute with a scalable inference algorithm which com-
plexity ofO(|V | + |E |), is often lower than the existing higher-order
proximity-aware methods (Tab. 1).
•We evaluate ComE on multiple real-world datasets with various
application tasks. It renders better graph visualization results, and
also improves the state-of-the-art baselines by at least 6.6% (NMI)
and 2.2%–16.9% (conductance) in community detection, 0.8%–26.9%
(macro-F1) and 0.71%–48% (micro-F1) in node classification.

2 RELATEDWORK
We summarize the differences of our work with some representative
related work on graph embedding and community detection in
Tab. 1. Next we will detail the discussion of related work.

2.1 Graph Embedding
As there is an increasing amount of graph data, ranging from social
networks to various information networks, an important question
arises is how to represent a graph for analytics [11]. Graph embed-
ding is the state-of-the-art graph representation framework, which
aims to project a graph into a low-dimensional space for further
applications [16, 20, 26]. In terms of the target to embed, most of
the existing graph embedding methods focus on nodes. For exam-
ple, earlier methods, such as MDS [7], LLE [21], IsoMap [26] and
Laplacian eigenmap [2], aim to preserve the first-order proximity
extracting the leading eigenvectors of a graph affinity matrices.

Session 2D: Network Embedding 2 CIKM’17, November 6-10, 2017, Singapore

378



Table 1: Comparison with related work. In the following
analysis are reported only factors dependent to the graph.

node community community model
embed. embed. detection complexity

DeepWalk [20] • O ( |V | log |V |)
LINE [24] • O (a |E |)

Node2Vec [12] • O ( |V | log |V | + |V |a2)
GraRep [5] • O ( |V |3)
Spectral [25] • O ( |V |3)
DNR [34] • • O ( |V |2)

M-NMF [31] • • O ( |V |2)
ComE • • • O ( |V | + |E |)

More recent methods start to exploit neural networks to learn
the representation for each node, with either shallow architec-
tures [12, 24, 33] or deep architectures [1, 8, 18, 29]. DeepWalk [20]
models the second-order proximity for node embedding with path
sampling, and its complexity using hierarchical softmax2 for in-
ference is O(|V | log |V |). Node2Vec [12] extends DeepWalk with a
controlled path sampling process, which requires O(|V |a2) where
a is the average degree of the graph; thus, its model complexity is
O(|V | log |V | + |V |a2). LINE [24] and SDNE [29] preserve both first-
and second-order proximity at the price of a higher complexity,
respectively O(a |E |) and O(a |V |).

Compared with our methods, the above works have a lower
or comparable complexity, but neither try to detect nor represent
the communities. Community structure is known as an important
network property, and it has been considered in node embedding.
For example, in SAE [27], the authors show that spectral clustering
can be regarded as reconstructing a graph’s normalized similarity
matrix, but it is expensive with a complexity of at least O(|V |2.367).
Thus, they propose to directly construct the normalized similarity
matrix withO(|E |) complexity, and input it to stacked Auto-Encoder
for reconstruction with O(|V |) complexity. The resulting node em-
bedding is used for K-means clustering and is shown to obtain
better communities than spectral clustering. Similarly, DNR [34]
constructs a modularity matrix from the graph with O(|V |2) com-
plexity, then applies stacked Auto-Encoder to the modularity matrix
for node embedding. It also introduces must-links to supervise the
node embedding.

Higher-order of proximity methods, such as GraRep [5] and
HOPE [19], are not explicitly community aware. Besides this, GraRep
learn a high-order transition probability matrices and later run Sin-
gular Value Decomposition (SVD) for a O(|V |3) complexity. The
above-mentioned neither tries to embed communities, nor explic-
itly detects communities in node embedding, but generally have a
higher complexity due to the sparsity of real work network. There
is little work that tries to explicitly embed communities in a low-
dimensional space. For example, M-NMF [31] constructs the modu-
larity matrix with O(|V |2) complexity, then applies non-negative
matrix factorization to learn node embedding and community de-
tection together with a complexity proportional to O(|V |2).

Comparatively, M-NMF represents each community with a vec-
tor, thous we would not consider it to produce a community em-
bedding; besides its complexity is generally higher than our com-
plexity of O(|V | + |E |), since in practice the graphs are sparse with
|E | ≪ |V |2.
2If using negative sampling, the complexity becomesO ( |V |).

Table 2: Notations used in this paper.

Notation Description
G(V , E) Graph G , nodes V and edges E

ℓ Length of each random walk path in sampling
γ Number of random walks for each node in sampling
ζ Context size
m Negative context size

ϕ i ∈ R
d Node embedding of node i

ϕ′i ∈ R
d Context embedding of node i

N(ψk , Σk ) Community embedding of community k
ψk ∈ R

d Community embedding k ’s mean vector
Σk ∈ R

d×d Community embedding k ’s covariance matrix
πik ∈ [0, 1] Community membership of node i to community k

Pn (·) Negative sampling probability
K Number of communities on G
α Trade-off parameter for context embedding
β Trade-off parameter for community embedding
a graph’s average degree

2.2 Community Detection
Community detection aims to discover groups of nodes on a graph,
such that the intra-group connections are denser than the inter-
group ones [30]. With the prevalence of social networks, recent
community detection studies start to exploit rich node interactions
on the graphs, such as nodes with content [22], attributes [23] and
node-to-node diffusion [4]. A comprehensive survey of recent com-
munity detection algorithms can be found in [32]. In this work, our
community detection is applied to homogeneous graphs, whose
nodes and edges do not have additional information. Earlier com-
munity detection methods on homogeneous graphs often apply
different clustering algorithms directly on the graph adjacency
matrix. For example, in [25], spectral clustering is applied to the
social networks for extracting the communities. In [13], a Laplacian
Regularized GMM is trained to capture the manifold structure of a
nearest neighbor graph.

With the recent development of neural networks and deep learn-
ing, node embedding is utilized to assist community detection [15,
27]. Such work usually first embeds the graph in a low-dimensional
space, and then apply clustering algorithms such as K-means on the
embedding results. Despite the success of these node embedding
based methods in detecting communities, they often do not jointly
optimize node embedding and community detection together. As
their goals are mainly community detection, they do not necessarily
have an explicit notion of community embedding.

3 PROBLEM FORMULATION
As input, we are given a graph G = (V ,E), where V is the node
set and E is the edge set. Traditional graph embedding aims to
learn a node embedding for each vi ∈ V as ϕi ∈ Rd . In this paper,
we also try to learn community embedding. Suppose there are
K communities on the graph G. For each node vi , we denote its
community assignment as zi ∈ {1, ...,K}.

Motivated by the Gaussian mixture formulation [3], we define
community embedding as a multivariate Gaussian distribution in a
low-dimensional space.

Session 2D: Network Embedding 2 CIKM’17, November 6-10, 2017, Singapore

379



Definition 3.1. Community embedding of a communityk (with
k ∈ {1, ...,K}) in a d-dimensional space is a multivariate Gauss-
ian distribution N(ψk , Σk ), whereψk ∈ R

d is a mean vector and
Σk ∈ R

d×d is a covariance matrix.

As output, we aim to learn: (1) node embedding ϕi for each node
vi ∈ V ; (2) community membership πik , such that

∑K
k=1 πik = 1,

for each node vi ∈ V and each community k ∈ {1, ...,K}; (3) com-
munity embedding parameters (ψk , Σk ) for each community k
∈ {1, ...,K}.

We summarize all of our notations in Tab. 2.

3.1 Community Detection and Embedding
Given node embedding, one straightforward way to detect commu-
nities and learn their community embedding is to take a pipeline
approach. For example, as shown in Fig. 2, we can run Spectral
Clustering to detect communities, then fit a Gaussian mixture for
each community. However, such a pipeline approach lacks a unified
objective function, thus, being hard to optimize later with node
embedding. Alternatively, we can do community detection and em-
bedding together in one single objective function based on GMM.
That is, we consider each nodevi ’s embeddingϕi as generated by a
multivariate Gaussian distribution from a community zi = k . Then,
for all the nodes in V , we have the likelihood as∏ |V |

i=1
∑K
k=1 p(zi = k)p(vi |zi = k ;ϕi ,ψk , Σk ) (1)

where p(zi = k) is the probability of node vi belonging to commu-
nity k . For notation simplicity, we denote p(zi = k) as πik ; thus,
we have πik ∈ [0, 1] and

∑K
k=1 πik = 1. In community detection,

these πik ’s indicate the mixed community membership for each
node vi , and they are unknown. Besides, p(vi |zi = k ;ϕi ,ψk , Σk ) is
a multivariate Gaussian distribution defined as follows

p(vi |zi = k ;ϕi ,ψk , Σk ) = N(ϕi |ψk , Σk ) (2)

In community embedding, the (ψk , Σk )’s are unknown. By opti-
mizing Eq. 1 w.r.t. πik ’s and (ψk , Σk )’s, we achieve community
detection and embedding at the same time.

3.2 Node Embedding
Traditionally, node embedding focuses on preserving first- or second-
order proximity. For example, to preserve first-order proximity,
LINE [24] enforces two neighboring nodes to have similar embed-
ding by minimizing

O1 = −
∑
(vi ,vj )∈E logσ (ϕTj ϕi ) (3)

where σ (x) = 1/(1 + exp(−x)) is a sigmoid function. To preserve
second-order proximity, LINE and DeepWalk [20] both enforce two
nodes sharing many “contexts” (i.e., neighbors within ζ hops) to
have similar embedding. In this case, each node has two roles: a
node for itself and a context for some other nodes. To differentiate
such roles, DeepWalk introduces an extra context embedding for
each node vj as ϕ ′j ∈ R

d . Denote Ci as the set of contexts for vi .
Then, we adopt negative sampling [17] to define a function for

measuring how well vi generates each of its contexts vj ∈ Ci as

∆i j = logσ (ϕ ′Tj ϕi ) +
∑m
t=1 Evl∼Pn (vl )[logσ (−ϕ

′T
l ϕi )] (4)

where vl ∼ Pn (vl ) denotes sampling a node vl ∈ V as a “negative
context” of vi according to a probability Pn (vl ). We set Pn (vl ) ∝
r
3/4
l as proposed in [17], where rl is vl ’s degree. In total, there are
m negative contexts. Generally, maximizing Eq. 4 enforces node
vi ’s embedding ϕi to best generate its positive contexts ϕ ′j ’s, but
not its negative contexts ϕ ′l ’s. Then, we can minimize the following
objective function to preserve the second-order proximity:

O2 = −α
∑
vi ∈V

∑
vj ∈Ci ∆i j (5)

where α > 0 is a trade-off parameter.

3.3 Closing the Loop
In order to close the loop in Fig. 2, we need to enable the feed-
back from community detection and community embedding to
node embedding. Suppose we have identified the mixed commu-
nity membership πik ’s and the community embedding (ψk , Σk )’s
in Sec. 3.1. Then, we can re-use Eq. 1 to enable such feedback, by
seeing the node embeddingϕi ’s as unknown. Effectively, optimizing
Eq. 1 w.r.t.ϕi ’s enforces the nodesϕi ’s within the same community
to get closer to the corresponding community centerψk . That is,
two nodes sharing a community are likely to have similar embed-
ding. Compared with the first- and second-order proximity, this
design enforces community-aware high-order proximity on node
embedding, which is useful for community detection and embed-
ding later. For example, in Fig. 1(a), node 3 and node 10 are directly
linked, but they tend to belong to two different communities ac-
cording to [35]. Therefore, by only preserving first-order proximity,
we may not tell their community membership’s difference well. For
another example, node 9 and node 10 share a number of one-hop
and two-hop neighbors, but compared with node 10, node 9 tend to
be closer to community led by node 1 according to [35]. Therefore,
by only preserving second-order proximity, we may not tell their
community membership’s difference well either.

Based on the closed loop, we optimize community detection,
community embedding and node embedding together. We have
three types of proximity to consider for node embedding, including
first-, second- and high-order proximity. In general, there are two
approaches to combine different types of proximity for node em-
bedding: (1) “concatenation”, e.g., LINE first separately optimizes
O1 and O2, then it concatenates the two resulting embedding for
each node into a long vector as the final output; (2) “unification”,
e.g., SDNE [29] learns a single node embedding for each node to
preserve both first- and second-order proximity at the same time.
In this paper, to encourage the node embedding to unify multiple
types of proximity, we adopt the unification approach, and leave
the other approach as future work. Consequently, based on Eq. 1,
we define the objective function for community detection and em-
bedding, as well as enforcing the high-order proximity for node
embedding as

O3 = −
β
K
∑ |V |
i=1 log

∑K
k=1 πikN(ϕi |ψk , Σk ), (6)

where β ≥ 0 is a trade-off parameter. Denote Φ = {ϕi }, Φ′ = {ϕ ′i },
Π = {πik }, Ψ = {ψ ′k } and Σ = {Σk } for i = 1, ..., |V | and k =
1, ...,K .

Session 2D: Network Embedding 2 CIKM’17, November 6-10, 2017, Singapore

380



Then, we unify the first- and second-order proximity for node
embedding. The ultimate objective function for ComE is

L(Φ,Φ′,Π,Ψ, Σ) = O1(Φ) +O2(Φ,Φ′) +O3(Φ,Π,Ψ, Σ) (7)

Our final optimization problem becomes:

(Φ∗,Φ′∗,Π∗,Ψ∗, Σ∗) ← argmin
∀k,diaд(Σk )>0

L(Φ,Φ′,Π,Ψ, Σ) (8)

where diaд(Σk ) returns the diagonal entries of Σk . We particularly
introduce a constraint of diaд(Σk ) > 0 for each k ∈ {1, ...,K} to
avoid the singularity issue of optimizing L. Similar to GMM [3],
there exists degenerated solutions for optimizing L without any
constraint. That is, when a Gaussian component collapses to a
single point, the diaд(Σk ) becomes zero, which makes O3 become
negative infinity.

4 INFERENCE
Since our objective in Eq. 8 can be seen as consisted of node embed-
ding and community embedding, we decompose the optimization
into two parts, and take an iterative approach to solve it. Specifically,
we consider iteratively optimizing (Π,Ψ, Σ) with a constrained
minimization given (Φ,Φ′), and optimizing (Φ,Φ′) with an uncon-
strained minimization given (Π,Ψ, Σ). Empirically, this iterative
optimization algorithm converges quickly with a reasonable ini-
tialization, e.g., we initialize (Φ,Φ′) by DeepWalk results in our
experiments. We report the convergence in Sec. 5.4. Next we detail
this iterative optimization.

Fix (Φ,Φ′), optimize (Π,Ψ, Σ). In this case, Eq. 8 is simplified as
inferring a , with the constraints of diaд(Σk ) > 0 for each k ∈
{1, ...,K}. To solve this constrained optimization, we adopt the
approach as suggested by [3], i.e., we use expectation maximization
(EM) algorithm [9] to infer (Π,Ψ, Σ), and meet the constraint via
suitable heuristics of randomly resetting Σk > 0 and ψk ∈ R

d

whenever a diaд(Σk ) starts to have zero. Particularly, by EM, we
can iteratively update the (Π,Ψ, Σ) by

πik =
Nk
|V | , (9)

ψk =
1
Nk

∑ |V |
i=1 γikϕi , (10)

Σk =
1
Nk

∑ |V |
i=1 γik (ϕi −ψk )(ϕi −ψk )

T , (11)

where γik =
πikN(ϕ i |ψk ,Σk )∑K

k′=1 πik′N(ϕ i |ψk′,Σk′ )
and Nk =

∑ |V |
i=1 γik . It is worth

noting that, in practice if (Φ,Φ′) are initialized reasonably (e.g., by
DeepWalk in our experiments), the constraints of diaд(Σk ) > 0 are
easily satisfied, thus the inference of (Π,Ψ, Σ) can converge quickly.

Fix (Π,Ψ, Σ), optimize (Φ,Φ′). In this case, Eq. 8 is simplified as
an unconstrained optimization over the node embedding with three
types of proximity. Due to the summation within the logarithm
term of O3, it is inconvenient to compute the gradient of ϕi . Thus,
we try to minimize an upper bound of L(Φ,Φ′ |Φ,Ψ, Σ) instead.
Specifically, we introduce

O ′3 = −
β
K
∑ |V |
i=1

∑K
k=1 πik logN(ϕi |ψk , Σk ) (12)

Algorithm 1 Inference algorithm for ComE

Require: graph G = (V ,E), #(community) K , #(paths per node) γ ,
walk length ℓ, context size ζ , embedding dimension d , negative
context sizem, parameters (α , β).

Ensure: node embedding Φ, context embedding Φ′, community
assignment Π, community embedding (Ψ, Σ).

1: P ← SamplePath(G, ℓ);
2: Initialize Φ and Φ′ by DeepWalk [20] with P;
3: for iter = 1 : T1 do
4: for subiter = 1 : T2 do
5: Update πik ,ψk and Σk by Eq. 9, Eq. 10 and Eq. 11;
6: for k = 1, ...,K do
7: if there exists zero in diaд(Σk ) then
8: Randomly reset Σk > 0 andψk ∈ R

d ;
9: for all edge (i, j) ∈ E do
10: SGD on ϕi and ϕ j by Eq. 14;
11: for all path p ∈ P do
12: for all vi in path p do
13: SGD on ϕi by Eq. 15;
14: SGD on its context ϕ ′j ’s within ζ hops by Eq. 17;
15: for all node vi ∈ V do
16: SGD on ϕi by Eq. 16;

It is easy to prove thatO ′3(Φ|Π,Ψ, Σ) ≥ O3(Φ|Π,Ψ, Σ) due to the
following log-concavity∑ |V |

i=1
log

∑K

k=1
πikN(ϕi |ψk , Σk ) ≥∑ |V |

i=1

∑K

k=1
logπikN(ϕi |ψk , Σk )

(13)

As a result, we define

L′(Φ,Φ′ |Π,Ψ, Σ) = O1(Φ) +O2(Φ,Φ
′) +O ′3(Φ|Π,Ψ, Σ)

and, thus,L′(Φ,Φ′ |Π,Ψ, Σ) ≥ L(Φ,Φ′ |Π,Ψ, Σ).We optimizeL′(Φ,Φ′)
by stochastic gradient descent (SGD) [17]. For each vi ∈ V , we have

∂O1
∂ϕ i
= −

∑
(i, j)∈E σ (−ϕ

T
j ϕi )ϕ j , (14)

∂O2
∂ϕ i
= − α

∑
vj ∈Ci

[
σ (−ϕ ′j

Tϕi )ϕ
′
j

+
∑m
t=1 Evl∼Pn (vl )[σ (ϕ

′
l
Tϕi )(−ϕ

′
l )]

]
, (15)

∂O ′3
∂ϕ i
=
β
K
∑K
k=1 πikΣ

−1
k (ϕi −ψk ). (16)

We also compute the gradient for context embedding as

∂O2
∂ϕ′j
= −α

∑
vi ∈V

[
δ (vj ∈ Ci )σ (−ϕ

′
j
Tϕi )ϕi

+
∑m
t=1 Evl∼Pn (vl )[δ (vl = vj )σ (ϕ

′
l
Tϕi )(−ϕi )]

]
(17)

Algorithm and complexity. We summarize the inference algo-
rithm of ComE in Alg. 1. In line 1, for each vi ∈ V , we sample
γ paths starting from vi with length ℓ on G. In line 2, we initial-
ize (Φ,Φ′) by DeepWalk. In lines 4–8, we fix (Φ,Φ′) and optimize
(Π,Ψ, Σ) for community detection and embedding. In lines 9–16,
we fix (Π,Ψ, Σ) and optimize (Φ,Φ′) for node embedding.

Session 2D: Network Embedding 2 CIKM’17, November 6-10, 2017, Singapore

381



Particularly, we update node embedding by first-order proximity
(lines 9–10), second-order proximity (lines 11–14) and community-
aware high-order proximity (lines 15–16). We analyze the complex-
ity of Alg. 1. Path sampling in line 1 takes O(|V |γ ℓ). Parameter ini-
tialization byDeepWalk in line 2 takesO(|V |). Community detection
and embedding in line 5 takesO(|V |K). Checking constraint in lines
6–8 takesO(K). Node embedding w.r.t. first-order proximity in lines
9–10 takes O(|E |). Node embedding w.r.t. second-order proximity
in lines 11–14 takes O(|V |γ ℓ). Node embedding w.r.t. community-
aware high-order proximity in lines 15–16 takes O(|V |K). In total,
the complexity isO(|V |γ ℓ+|V |+T1×(T2 |V |K+K+|E |+|V |γ ℓ+|V |K)),
which is linear to the graph size (i.e., |V | and |E |). Thus, Alg. 1 is
efficient.

5 EXPERIMENTS
As community embedding is useful for visualizing communities
in a low-dimensional space, as well as helping both community
detection and node embedding, we design three evaluation tasks
for experiments: graph visualization, community detection and node
classification. Besides, we also empirically study the model conver-
gence and parameter sensitivity in this section. We provide the
code used during the experiments at the following link3.

Datasets. We use five public graph datasets for evaluation. These
graphs are of various types, ranging from social networks to word
co-occurrence network and academic paper citation network.
• BlogCatalog4 is a social network for users to publish blogs. In
this dataset, each node is a BlogCatalog user and each edge is a
friendship connection. Each node has multiple labels, indicating
the topics of the user’s blog topics.
• Flickr5 is social network for users to share images and videos. In
this dataset, each node is a Flickr user and each edge is a friendship
connection. Each node has a label, indicating the user’s interest
group such as "Sea Explorer".
•Wikipedia6 is a co-occurrence network of words appearing in the
fist million bytes of the Wikipedia dump. In this dataset, each node
is a word and each edge is a word co-occurrence relationship. Each
node has a label, indicating the word’s part-of-speech tag.
•DBLP7 is an academic paper citation network built upon the DBLP
repository. We extracted the papers from 19 selected conferences
from five areas, as shown in Tab. 4. In this dataset, each node is a
paper and each edge is a citation. Each node has a label, indicating
one of the five areas for its paper’s conference venue.
• Karate Club is a social network of a university karate club [35].

We summarize the statistics and the evaluation tasks for each
dataset in Tab. 3.

Evaluation metrics. In community detection, we use both con-
ductance [14] and normalized mutual information (NMI) [27]. Con-
ductance is basically a ratio between the number of edges leaving
a community and that within the community. NMI measures the
closeness between the predicted communities with ground truth
based on the node labels.

3https://github.com/andompesta/ComE.git
4http://socialcomputing.asu.edu/datasets/BlogCatalog3
5http://socialcomputing.asu.edu/datasets/Flickr
6http://snap.stanford.edu/node2vec/POS.mat
7https://aminer.org/billboard/aminernetwork

Table 3: Datasets used for evaluation. Task “d” denotes com-
munity detection, task “c” denotes node classification, and
task “v” denotes graph visualization.

#(node) #(edge) #(class) #(label)/node tasks
BlogCatalog 10,312 333,983 39 ≥ 1 d + c

Flickr 80,513 5,899,882 195 ≥ 1 d + c
Wikipedia 4,777 184,812 40 ≥ 1 d + c
DBLP 13,184 48,018 5 1 v + d + c

Karate Club 34 78 2 ≥ 1 v

Table 4: DBLP dataset labels.

Conference Label
EMNLP, ACL, CoNLL, COLING NLP
CVPR, ICCV, ICIP, SIGGRAPH Computer Vision
KDD, ICDM, CIKM, WSDM Data Mining
SIGMOD, VLDB/PVLDB, ICDE Database
INFOCOM, SIGCOM, MobiHoc, MobiCom Networking

In node classification, we use micro-F1 and macro-F1 [20]. Micro-
F1 is the overall F1 w.r.t. all kinds of labels. Macro-F1 is the average
of F1 scores w.r.t. each kind of label.

Baselines. We design baselines to back up our arguments in Sec. 1

that it is non-trivial to learn community embedding.
• SF : We first design a straightforward approach that separates
community detection and node embedding, later fits community
embedding from the detection and node embedding results. We use
Spectral Clustering [25] for community detection and use Deep-
Walk for node embedding; finally we use GMM to fit community
embedding. Note that, since its node embedding is the same as
DeepWalk, we will only evaluate SF in community detection and
community visualization for the Karate dataset.

Besides, we also consider the other approach that runs commu-
nity detection on the node embedding results from the following
state-of-the-art baselines and, then, runs GMM to detect communi-
ties and fit community embedding.

• DeepWalk [20]: it models second-order proximity in the embed-
ding process.

• LINE [24]: it considers both first- and second-order proximity.

• Node2Vec [12]: it extends DeepWalk by exploiting homophily and
structural roles in embedding.

• GraRep [5]: it models random walk based high-order proximity.

• M-NMF [31]: it jointly models node and community embedding
using non-negative matrix factorization.

We compared our model with all the baselines on all the datasets,
using the author-published codes. However, since baselines like
GraRep, M-NMF often had to compute dense adjacency matrices
we encounter unmanageable out-of-memory errors when running
these baselines even with a 64GB-memory machine for the Flickr
dataset. Similarly, Node2Vec is unfeasible on Flicker, since it has
to compute and store the transition probability for each neighbor-
hood of each node in order to perform non-uniform sampling from
discrete distributions.

Session 2D: Network Embedding 2 CIKM’17, November 6-10, 2017, Singapore

382

https://github.com/andompesta/ComE.git
http://socialcomputing.asu.edu/datasets/BlogCatalog3
http://socialcomputing.asu.edu/datasets/Flickr
http://snap.stanford.edu/node2vec/POS.mat
https://aminer.org/billboard/aminernetwork


Parameters and environment. Our ComE has only two more
parameters (i.e., α and β) than DeepWalk. To obtain a fair com-
parison we follow the DeepWalk and Node2Vec works to set the
parameters. Unless stated otherwise, for all the methods, we set
the embedding dimension d = 128. For DeepWalk, Node2Vec and
ComE, we set γ = ζ = 10, ℓ = 80 andm = 5. As our method, also
Node2Vec present two more parameters that need to be tuned. For
BlogCatalog andWikipedia, we follow the work done in [12], where
p = 0.25 and q = 0.25 result as the best tuning for BlogCatalog;
while Wikipedia better perform with p = 4 and q = 1. We followed
the same tuning procedure also for DBLP and we found out that,
like BlogCatalog, p = 0.25 and q = 0.25 works at best. For M-NMF,
we tune α and β in the range [0.1, 1, 5, 10] while keeping the other
parameter fixed. The final setting is: (1) α = 0.1 and β = 5 for
BlogCatalog and Wikipedia; (2) while for DBLP we used α = 10
and β = 5. For all the datasets, we set K as the number of unique
labels. We run experiments on Linux machines with eight 3.50GHz
Intel Xeon(R) CPUs and 16GB memory.

5.1 Graph Visualization
We compare ComE with the baselines on both a small Karate Club
graph and a bigger DBLP paper citation graph. We visualize the
Karate Club graph in Fig. 3, based on the node and community
embedding results of our baselines.

(a) DeepWalk (b) LINE

(c) Node2Vec (d) GraRep

(e) M-NMF (f) SF
Figure 3: Graph visualization on the Karate Club graph.

(a) DeepWalk / SF (b) LINE

(c) Node2Vec (d) GraRep

(e) M-NMF (f) ComE

Figure 4: Graph visualization on the DBLP graph (better
viewed in color). Different node colors indicate different
communities; red is NLP, blue is Computer Vision, green is
Data Mining, yellow is Database and black is Networking

As we can see, LINE does not present community structures,
since it does not consider the community in its node embedding.
DeepWalk, Node2Vec, GraRep and M-NMF tend to present two sep-
arate communities, which cannot identify those weak supporters
for the communities (e.g., node 9), while SF detect noise communi-
ties due to the Spectral Clustering. In contrast, as shown in Fig. 1(b),
our ComE can clearly identify such weak supporters thanks to its
joint modeling of overlapping community detection, community
embedding and node embedding.

We visualize the DBLP paper citation graph in Fig. 4. We use the
t-SNE toolkit [28] for graph visualization. Instead of plotting com-
munity embedding eclipses, in t-SNE we use different node colors
to visualize different communities and see if the algorithms are able
to correctly preserve the communities present in the graphs. Note
that, although SF and DeepWalk have different way to generate
the community embedding, they use the same node embedding,
thus, they have the visualization results in Fig. 4(a). First of all, note
that no method is able to separate the green and the yellow classes
(Data Mining and Database), we believe that this is related to the
dataset itself given the similarity of the two topics. Moreover, Deep-
Walk and Node2Vec generate representations with many overlaps
among the colors and the overall embedding is quite similar. This
could be possible because both the methodology model only the
second-order proximity.

Session 2D: Network Embedding 2 CIKM’17, November 6-10, 2017, Singapore

383



(a) BlogCatalog (b) DBLP (c) Flickr (d) Wikipedia

Figure 5: Community detection results. The smaller conductance is, the better. The bigger NMI is, the better.
LINE presents a bit more cohesive visualization; probably this is

due to its ability in preserving first and second order proximity. We
also observe that, in GraRep’s results, green nodes are spread in
different places and mixed with red and yellow nodes, meaning a
lack of clear community structure in the embedding. This might be
possible due to its ability in decomposing a high-order transition
probability matrix, which could be dominate by Data Mining and
Database nodes. On the other hand, it is able to correctly detect Net-
working and Computer vision community. M-NMF, instead, present
blurred community structure. This could be related to the fact that
M-NMF relay on the modularity matrix to learn the community
embedding, which could be noise due to the overlap between the
green and yellow nodes. This hypothesis is also supported by the
karate results (Fig. 3(e)), in which M-NMF already demonstrate to
struggle in modeling overlapping communities. Compared with
all these baseline methods, our ComE can correctly detect three
classes thanks to its joint modeling, but as for the other methods
is not able to differentiate between green and yellow nodes which
are clustered in mixed communities.

5.2 Community Detection
In community detection, our goal is to predict the most likely com-
munity assignment for each node. As an unsupervised task, we use
the whole graph for learning embeddings and, hence, predicting
communities for each node. Note that in BlogCatalog, Wikipedia
and Flickr are multi-labels datasets, so we compute only the con-
ductance for the Top 2 communities of each node since there is no
clear way to calculate NMI for such a multi-label setting.

During those experiments we set α = 0.1, β = 0.1 in ComE for
all the datasets. As shown in Fig. 5, ComE is consistently better
than the baselines in terms of both conductance and NMI. For the
conductance ComE improves the best baselines by relatively 2.2%
to 3.1% on BlogCatalog and Wikipedia, 4.4% and 3.2% in Flickr, and
17.1% in DBLP. Under NMI metrics ComE achieve an improvement
of 6.7%. These improvements suggest that, modeling community
detection together with node embedding is better than solving
them separately. The general poor performance of SF methods also
support the hypothesis of having the closed loop model. Besides,
we also observe that, on average, the graph embedding methods
perform better than the others, which suggest the usefulness of
consider graph embedding for community detection. In particu-
lar, Node2Vec happen to be the best baseline for both DBLP and
BlogCatalog datasets, while in Wikipedia GraRep outperform all
the others. Finally, we observe that, accordingly to the findings in
Sec. 5.1, M-NMF struggle in modeling multi-label datasets.

5.3 Node Classification
In node classification, our goal is to categorize each node into one
or more classes, depending on whether it is a single-label or multi-
label setting. We follow [20] to first train graph embedding on the
whole graph, then randomly split 10% (BlogCatalog, Wikipedia and
DBLP) and 90% (Flickr) of nodes as test data, respectively. We use
the remaining nodes, together with their labels, to train a classifier
by LibSVM (c = 1 for all the methods) [6]. We repeat 10 times and
report the average results.

We compare ComE with all the baselines in terms of node clas-
sification. We set α = 0.1, β = 0.01 for all the datasets except for
DBLP where we kept α = 0.1 and β = 0.1. We vary the number
of training data to build the classifiers for each method. As shown
in Tab. 5, ComE is generally better than the baselines in terms of
both macro-F1 and micro-F1. In particular, ComE improves the best
baselines by relatively 0.8% to 22.6% (macro-F1) and 0.71% to 48%
(micro-F1), when using 80% (BlogCatalog, Wikipedia and DBLP)
and 26.9% (macro) 1.5% (micro) when using 8% (Flickr) of labeled
nodes for training. Our student t-tests show that all the above rel-
ative improvements are significant over the 10 data splits, with
one-tailed p-values always less than 0.01. It is interesting to see
ComE improves the baselines on node classification, since it is un-
supervised and it does not directly optimize the classification loss.
This implies the high-order proximity from community embedding
does contribute to node embedding. In addition, we also make some
interesting observations from Tab. 5.

Firstly, in Wikipedia, GraRep is better than our ComE when
using less than 50% labeled nodes in training under the Micro-
F1 score. A possible reason is that, Wikipedia contains a much
smaller number of nodes than the rest of the datasets, leading to
a comparatively smaller set of sampled paths. On the other hand,
GraRep used the transition probability matrix, which could contain
more information than the sample path, to learn higher-order of
proximity. This provides supplemental information to train the
classifiers with limited training labels. However, as more labeled
data is available, this advantage of GraRep becomes smaller, and
our ComE starts to outperform.

Secondly, it is possible to notice how in BlogCatalog, GraRep
is the best baseline; meanwhile Node2Vec outperforms the other
baselines in DBLP. This maybe because the number of edges in
DBLP is much fewer than those of the other datasets. In a graph
with low average degree, it is easier for Node2Vec learning which
are the good neighborhood to explore. Moreover, respect tho all
the other datasets, in Dblp the random walk based methods works
relatively better than the factorization based methods.

Session 2D: Network Embedding 2 CIKM’17, November 6-10, 2017, Singapore

384



Table 5: Node classification results.
BlogCatalog Flickr

% Labels 10% 20% 30% 40% 50% 60% 70% 80% 90% 1% 2% 3% 4% 5% 6% 7% 8% 9%

M
ac
ro
-F
1
(%
) ComE 19.3 22.4 23.5 24.8 25.1 25.4 25.7 26.2 26.4 3.5 5.3 10.1 15.4 18.2 19.0 19.3 19.7 20.0

DeepWalk/SF 17.2 18.9 19.9 20.6 20.9 21.4 21.5 21.5 21.5 1.9 3.1 7.9 11.6 13.8 14.3 15.2 15.5 15.7
Line 7.6 8.6 9.5 10.0 10.2 10.8 10.8 10.9 10.9 1.6 2.5 6.0 8.7 10.2 10.5 11.0 11.2 11.2
Node2Vec 18.3 20.5 21.9 22.8 23.1 23.4 23.6 23.6 23.6 - - - - - - - - -
GraRep 19.6 21.0 22.3 22.8 22.9 23.3 23.5 23.6 24.0 - - - - - - - - -
M-NMF 12.8 13.7 14.7 15.2 15.3 15.3 15.6 15.7 15.8 - - - - - - - - -

M
ic
ro
-F
1
(%
) ComE (ours) 30.1 35.9 37.3 39.6 40.3 40.7 41.0 41.4 42.4 10.2 12.2 18.7 29.1 34.6 35.1 35.5 35.9 36.1

DeepWalk/SF 27.1 29.8 33.2 35.4 35.9 37.9 38.0 38.3 39.0 6.1 7.9 17.4 27.1 32.9 33.2 35.1 35.3 35.5
Line 18.5 21.5 25.2 27.2 27.6 29.5 29.8 30.2 30.5 3.9 5.5 14.7 24.5 30.3 30.6 32.3 32.5 32.6
Node2Vec 27.8 31.0 34.7 36.9 37.4 39.4 39.6 39.9 40.5 - - - - - - - -
GraRep 30.4 32.9 36.3 38.2 38.6 40.2 40.7 40.9 42.0 - - - - - - - -
M-NMF 23.2 25.7 29.0 31.0 31.5 33.2 33.4 33.8 34.4 - - - - - - - - -

Wikipedia DBLP
% Labels 10% 20% 30% 40% 50% 60% 70% 80% 90% 10% 20% 30% 40% 50% 60% 70% 80% 90%

M
ac
ro
-F
1
(%
) ComE 5.5 5.5 4.9 4.9 5.6 6.9 8.6 10.6 11.2 91.1 91.6 91.8 92.0 92.1 92.2 92.2 92.2 92.4

DeepWalk/SF 2.3 2.4 2.6 2.7 3.9 4.4 5.1 6.2 10.9 89.7 90.5 90.8 91.0 91.1 91.2 91.2 91.2 91.4
Line 2.1 2.3 2.4 2.5 2.8 3.3 3.9 5.3 8.9 89.2 89.8 90.1 90.2 90.3 90.3 90.4 90.4 90.7
Node2Vec 2.9 2.9 3.1 3.3 4.1 5.8 7.7 8.3 9.5 90.0 90.7 91.0 91.2 91.4 91.4 91.5 91.5 91.7
GraRep 4.5 4.8 4.8 4.8 4.8 5.6 6.3 8.1 11.0 89.9 90.1 90.3 90.4 90.5 90.5 90.5 90.6 90.8
M-NMF 1.7 1.7 1.7 1.7 1.8 2.3 3.0 3.9 5.3 88.3 88.8 89.2 89.3 89.4 89.5 89.5 89.6 89.8

M
ic
ro
-F
1
(%
) ComE 25.4 25.3 24.6 24.3 27.7 31.2 38.3 49.5 50.0 91.6 92.0 92.2 92.4 92.5 92.6 92.6 92.6 92.8

DeepWalk/SF 20.0 20.2 20.4 20.9 24.1 25.1 26.8 31.1 45.3 90.3 90.9 91.2 91.4 91.6 91.6 91.6 91.6 91.8
Line 21.5 22.2 22.4 22.5 23.0 24.4 26.1 30.5 44.2 89.9 90.5 90.7 90.8 90.9 91.0 91.0 91.0 91.4
Node2Vec 20.7 21.2 21.3 21.4 25.6 29.7 37.4 40.6 47.3 90.6 91.2 91.5 91.7 91.9 91.9 91.9 92.0 92.2
GraRep 24.6 25.4 25.8 25.8 26.1 27.1 29.1 33.4 46.0 90.4 90.6 90.8 90.9 91.0 91.1 91.1 91.1 91.4
M-NMF 19.6 20.4 21.2 21.6 22.5 23.9 25.7 30.5 45.1 89.1 89.5 89.9 90.0 90.1 90.2 90.2 90.3 90.5

(a) Conductance (b) NMI (c) Micro-F1 (d) Macro-F1

Figure 6: Impact of the parameters α and β . Note that NMI has only DBLP since is the only single-label dataset.

This suggests that the average degree of the graph can impact
the performance due to the length and the windows size limitation
of the random walk methods. Besides this intuition, a deeper in-
vestigation is needed to better understand the limitation and the
advantages of the random walks methods.

Thirdly, it is interestingly to notice how in node classification
the best baseline is the opposite respect community detection. In
Sec. 5.2 Node2Vec was the best baseline for BlogCatalog and DBLP,
while in node classification task GraRep outperform Node2Vec.
This suggest that focusing on community level as higher order of
proximity is more valuable than learning the graph structure form
the transition probability matrix, since lead to better performances
in a wider tasks set.

5.4 Model Study
We tune the model parameters α (trade-off parameter for context
embedding) and β (trade-off parameter for community embedding)
in Fig. 6. In each figure, we tune one parameters α and β within
the range of [0.001, 1] while fixing the other parameter as 0.1. In
general, the model performance is quite robust when α and β are
within the range of [0.001, 1]. Specifically, α = 0.1 gives the best
trade off for the second-order proximity in the objective function as
it provides the best community prediction results in Wikipedia and
DBLP, and the best node classification results in BlogCatalog and
Flickr. The tuning of β is not as sensitive as α , especially in terms
of node classification task. However, as indicated by community
detection performance in BlogCatalog, β = 0.1 is the best trade-off
for community embedding.

Session 2D: Network Embedding 2 CIKM’17, November 6-10, 2017, Singapore

385



(a) Convergence (b) Efficiency

Figure 7: Model’s convergence and efficiency

We further validate the convergence and efficiency of ComE in
Fig. 7. We record the value of the loss function (Eq. 7) at the end of
every iteration (line 18 in Alg. 1) to show the convergence of our
proposed ComE. Note that we normalize the loss value by |V | for
different datasets so as to better illustrate them in one figure. As
shown in Fig. 7(a), the loss of ComE converges quickly within 2–3
iterations. To demonstrate the efficiency of ComE, we test it on all
the four datasets at different scales.

For each dataset, we generate three subsets in whichwe keep 25%,
50% and 75% of the total number of edges and nodes, respectively.
Note that, to speed up the computation time of those experiments
we set d = 2 and ζ = 5. The diagram in Fig. 7(b) shows the process-
ing time of ComE (line 2 – line 19 in Alg. 1) in different datasets.
Clearly, the processing time of ComE is linear to the graph size (i.e.,
|V | and |E |). This validates our complexity analysis at the end of
Sec. 4.

6 CONCLUSION
In this paper, we studied the important, yet largely under-explored
problem of embedding communities on graphs. We developed a
closed loop among community embedding, community detection
and node embedding. Therefore, we tried to jointly optimize all
these three tasks, in order to allow them to reinforce each other.

We then developed a scalable inference algorithm, which only re-
quires a complexity ofO(|V |+ |E |). We evaluated our model on mul-
tiple real-world datasets and showed that our model outperforms
the state-of-the-art baselines by at least 6.6% (NMI) and 2.2%–16.9%
(conductance) in community detection, 0.8%–26.9% (macro-F1) and
0.71%–48% (micro-F1) in node classification. It also improved the
baselines in the task of graph visualization.

ACKNOWLEDGEMENTS
We thank the support of: National Natural Science Foundation of
China (No. 61502418), Research Grant for Human-centered Cyber-
physical Systems Programme at Advanced Digital Sciences Center
from Singapore A*STAR, National Science Foundation IIS 16-19302
and CSD-Centro Sistemi Direzionali.

REFERENCES
[1] Shiyu Chang andRSM:Dai2016 Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C.

Aggarwal, and Thomas S. Huang. 2015. Heterogeneous Network Embedding via
Deep Architectures. In KDD. 119–128.

[2] Mikhail Belkin and Partha Niyogi. 2001. Laplacian Eigenmaps and Spectral
Techniques for Embedding and Clustering. In NIPS. 585–591.

[3] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc., NJ, USA.

[4] HongYun Cai, Vincent W. Zheng, Fanwei Zhu, Kevin Chen-Chuan Chang, and
Zi Huang. 2017. From Community Detection to Community Profiling. PVLDB
10, 7 (2017), 817–828.

[5] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph Repre-
sentations with Global Structural Information. In CIKM. 891–900.

[6] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A Library for Support
Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 3 (May 2011), 27:1–27:27.

[7] Trevor F. Cox and M.A.A. Cox. 2000. Multidimensional Scaling, Second Edition (2
ed.). Chapman and Hall/CRC.

[8] Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative Embeddings of Latent
Variable Models for Structured Data. In ICML. 2702–2711.

[9] Arther P. Dempster, Nan M. Laird, and Donald B. Rubin. 1977. Maximum Likeli-
hood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical
Society. Series B (Methodological) 39, 1 (1977), 1–38.

[10] Hanyin Fang, Fei Wu, Zhou Zhao, Xinyu Duan, Yueting Zhuang, and Martin
Ester. 2016. Community-Based Question Answering via Heterogeneous Social
Network Learning. In AAAI. 122–128.

[11] Yuan Fang, Wenqing Lin, Vincent W. Zheng, Min Wu, Kevin Chen-Chuan Chang,
and Xiaoli Li. 2016. Semantic proximity search on graphs with metagraph-based
learning. In ICDE. 277–288.

[12] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In KDD.

[13] X. He, D. Cai, Y. Shao, H. Bao, and J. Han. 2011. Laplacian Regularized Gaussian
Mixture Model for Data Clustering. TKDE 23, 9 (2011), 1406–1418.

[14] Kyle Kloster and David F. Gleich. 2014. Heat Kernel Based Community Detection.
In KDD. 1386–1395.

[15] Mark Kozdoba and Shie Mannor. 2015. Community Detection via Measure Space
Embedding. In NIPS. 2890–2898.

[16] Zemin Liu, Vincent W. Zheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan
Chang, Minghui Wu, and Jing Ying. 2017. Semantic Proximity Search on Hetero-
geneous Graph by Proximity Embedding. In AAAI. 154–160.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-
ality. In NIPS. 3111–3119.

[18] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
Convolutional Neural Networks for Graphs. In ICML. 2014–2023.

[19] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric Transitivity Preserving Graph Embedding. In KDD. 1105–1114.

[20] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In KDD. 701–710.

[21] Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear Dimensionality Reduction
by Locally Linear Embedding. Science 290, 5500 (2000), 2323–2326.

[22] Mrinmaya Sachan, Avinava Dubey, Shashank Srivastava, Eric P. Xing, and Eduard
Hovy. 2014. Spatial Compactness Meets Topical Consistency: Jointly Modeling
Links and Content for Community Detection. InWSDM. 503–512.

[23] Yizhou Sun, Charu C. Aggarwal, and Jiawei Han. 2012. Relation Strength-aware
Clustering of Heterogeneous Information Networks with Incomplete Attributes.
PVLDB 5, 5 (Jan. 2012), 394–405.

[24] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. InWWW. 1067–1077.

[25] Lei Tang and Huan Liu. 2011. Leveraging social media networks for classification.
Data Min. Knowl. Discov. 23, 3 (2011), 447–478.

[26] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. 2000. A Global
Geometric Framework for Nonlinear Dimensionality Reduction. Science 290,
5500 (2000), 2319–2323.

[27] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. 2014. Learning Deep
Representations for Graph Clustering. In AAAI. 1293–1299.

[28] L.J.P. van der Maaten and G.E. Hinton. 2008. Visualizing High-Dimensional Data
Using t-SNE. JMLR 9 (2008), 2579–2605.

[29] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-
bedding. In KDD. 1225–1234.

[30] Meng Wang, Chaokun Wang, Jeffrey Xu Yu, and Jun Zhang. 2015. Community
Detection in Social Networks: An In-depth Benchmarking Studywith a Procedure-
oriented Framework. PVLDB 8, 10 (June 2015), 998–1009.

[31] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community Preserving Network Embedding. In AAAI. 203–209.

[32] Jierui Xie, Stephen Kelley, and Boleslaw K. Szymanski. 2013. Overlapping Com-
munity Detection in Networks: The State-of-the-art and Comparative Study.
ACM CSUR 45, 4 (2013), 43:1–43:35.

[33] Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. 2016. Rep-
resentation Learning of Knowledge Graphs with Entity Descriptions. In AAAI.
2659–2665.

[34] Liang Yang, Xiaochun Cao, Dongxiao He, ChuanWang, XiaoWang, andWeixiong
Zhang. 2016. Modularity Based Community Detection with Deep Learning. In
IJCAI. 2252–2258.

[35] Wayne W. Zachary. 1977. An Information Flow Model for Conflict and Fission in
Small Groups. Journal of Anthropological Research 33, 4 (1977), 452–473.

Session 2D: Network Embedding 2 CIKM’17, November 6-10, 2017, Singapore

386


	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Embedding
	2.2 Community Detection

	3 Problem Formulation
	3.1 Community Detection and Embedding
	3.2 Node Embedding
	3.3 Closing the Loop

	4 Inference
	5 Experiments
	5.1 Graph Visualization
	5.2 Community Detection
	5.3 Node Classification
	5.4 Model Study

	6 Conclusion
	References



