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Abstract

Deep learning methods employ 
multiple processing layers to learn 
hierarchical representations of 

data, and have produced state-of-the-art 
results in many domains. Recently, a 
variety of model designs and methods 
have blossomed in the context of natu-
ral language processing (NLP). In this 
paper, we review significant deep 
learning related models and 
methods that have been 
employed for numerous 
NLP tasks and provide a 
walk-through of their 
evolution. We also sum-
mar ize, compare and 
contrast the various models 
and put forward a detailed 
understanding of the past, present 
and future of deep learning in NLP.

I. Introduction
Natural language processing (NLP) is a 
theory-motivated range of computa-
tional techniques for the automatic 
analysis and representation of human 
language. NLP research has evolved 
from the era of punch cards and batch 

processing, in which the analysis of a 
sentence could take up to 7 minutes, to 
the era of Google and the likes of it, in 
which millions of webpages can be 

processed in less than a second [1]. NLP 
enables computers to perform a wide 
range of natural language related tasks at 
all levels, ranging from parsing and part-
of-speech (POS) tagging, to machine 
translation and dialogue systems.

Deep learning architectures and al
gorithms have already made impressive 
advances in fields such as computer vision 
and pattern recognition. Following this 
trend, recent NLP research is now in

creasingly focusing on the use of new deep 
learning methods (see Fig. 1). For decades, 
machine learning approaches targeting 
NLP problems have been based on shal-
low models (e.g., SVM and logistic regres-
sion) trained on very high dimensional and 
sparse features. In the last few years, neural 
networks based on dense vector represen-
tations have been producing superior 

results on various NLP tasks. This 
trend is sparked by the success 

of word embeddings [2], [3] 
and deep learning meth-
ods [4]. Deep learning 
enables multi-level auto-
matic feature representa-

tion learning. In contrast, 
traditional machine learning 

based NLP systems liaise heavily 
on hand-crafted features. Such hand-

crafted features are time-consuming and 
often incomplete.

Collobert et al. [5] demonstrated that 
a simple deep learning framework 
outperforms most state-of-the-art ap
proaches in several NLP tasks such as 
named-entity recognition (NER), se
mantic role labeling (SRL), and POS 
tagging. Since then, numerous complex 
deep learning based algorithms have 
been proposed to solve difficult NLP 
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tasks. We review major deep learning 
related models and methods applied to 
natural language tasks such as convolu-
tional neural networks (CNNs), recur-
rent neural networks (RNNs), and 
recursive neural networks. We also dis-
cuss memory-augmenting strategies, 
attention mechanisms and how unsu-
pervised models, reinforcement learning 
methods and recently, deep generative 
models have been employed for lan-
guage-related tasks.

To the best of our knowledge, this 
work is the first of its type to compre-
hensively cover the most popular deep 
learning methods in NLP research 
today. The work by Goldberg [6] only 
presented the basic principles for apply-
ing neural networks to NLP in a tuto-
rial manner. We believe this paper will 
give readers a more comprehensive idea 
of current practices in this domain. The 
structure of the paper is as follows: Sec-
tion II introduces the concept of dis-
tributed representation, the basis of 
sophisticated deep learning models; 
next, Sections III, IV, and V discuss 
popular models such as convolutional, 
recurrent, and recursive neural net-
works, as well as their use in various 
NLP tasks; following, Section VI lists 
recent applications of reinforcement 
learning in NLP and new developments 
in unsupervised sentence representation 
learning; later, Section VII illustrates the 
recent trend of coupling deep learning 
models with memory modules; finally, 
Section VIII summarizes the perfor-
mance of a series of deep learning meth-

ods on standard datasets about major 
NLP topics.

II. Distributed Representation
Statistical NLP has emerged as the pri-
mary option for modeling complex nat-
ural language tasks. However, in its 
beginning, it often used to suffer from 
the notor ious curse of dimensionality 
while learning joint probability func-
tions of language models. This led to the 
motivation of learning distributed repre-
sentations of words existing in low-
dimensional space [7].

A. Word Embeddings
Distributional vectors or word embed-
dings (Fig. 2) essentially follow the dis-
tributional hypothesis, according to 
which words with similar meanings tend 
to occur in similar context. Thus, these 
vectors try to capture the characteristics 
of the neighbors of a word. The main 
advantage of distributional vectors is that 
they capture similarity between words. 
Measuring similarity between vectors is 
possible, using measures such as cosine 
similarity. Word embeddings are often 
used as the first data processing layer in a 
deep learning model. Typically, word 
embeddings are pre-trained by optimiz-
ing an auxiliary objective in a large 
unlabeled corpus, such as predicting a 
word based on its context [3], [8], where 
the learned word vectors can capture 
general syntactical and semantic infor-
mation. Thus, these embeddings have 
proven to be efficient in capturing con-
text similarity, analogies and due to its 

smaller dimensionality, are fast and effi-
cient in computing core NLP tasks.

Over the years, the models that cre-
ate such embeddings have been shallow 
neural networks and there has not been 
need for deep networks to create good 
embeddings. However, deep learning 
based NLP models invariably represent 
their words, phrases and even sentences 
using these embeddings. This is in fact a 
major difference between traditional 
word count based models and deep 
learning based models. Word embed-
dings have been responsible for state-of-
the-art results in a wide range of NLP 
tasks [9]–[12]. For example, Glorot et al. 
[13] used embeddings along with 
stacked denoising autoencoders for 
domain adaptation in sentiment classifi-
cation and Hermann and Blunsom [14] 
presented combinatory categorial auto-
encoders to learn the compositionality 
of sentence. Their wide usage across the 
recent literature shows their effectiveness 
and importance in any deep learning 
model performing a NLP task.

Distributed representations (embed-
dings) are mainly learned through con-
text. During 1990s, several research 
developments [15] marked the founda-
tions of research in distributional seman-
tics. A more detailed summary of these 
early trends is provided in [16], [17]. 
Later developments were adaptations of 
these early works, which led to creation 
of topic models like latent Dirichlet 
allocation [18] and language models [7]. 
These works laid out the foundations of 
representation learning.
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In 2003, Bengio et al. [7] proposed a 
neural language model which learned dis-
tributed representations for words (Fig. 3). 
Authors argued that these word represen-
tations, once compiled into sentence rep-
resentations using joint probability of word 
sequences, achieved an exponential num-
ber of semantically neighboring sentences. 
This, in turn, helped in generalization 
since unseen sentences could now gather 
higher confidence if word sequences with 
similar words (in respect to nearby word 
representation) were already seen.

Collobert and Weston [19] was the 
first work to show the utility of pre-
trained word embeddings. The authors 
proposed a neural network architecture 
that forms the foundation to many cur-
rent approaches. The work also estab-
lishes word embeddings as a useful tool 
for NLP tasks. However, the immense 
popularization of word embeddings was 
arguably due to [3], who proposed the 
continuous bag-of-words (CBOW) and 
skip-gram models to efficiently con-
struct high-quality distributed vector 
representations. Propelling their popu-
larity was the unexpected side effect of 
the vectors exhibiting compositionality, 
i.e., adding two word vectors results in a 
vector that is a semantic composite of 
the individual words, e.g., ‘man’ + ‘royal’ 
= ‘king’. The theoretical justification for 
this behavior was recently given by Git-
tens et al. [20], which stated that com-
positionality is seen only when certain 
assumptions are held, e.g., the assump-
tion that words need to be uniformly 
distributed in the embedding space.

Pennington et al. [21] is another 
famous word embedding method which 
is essentially a “count-based” model. Here, 
the word co-occurrence count matrix is 
preprocessed by normalizing the counts 
and log-smoothing them. This matrix is 
then factorized to get lower dimensional 
representations which is done by minimiz-
ing a “reconstruction loss”.

Below, we provide a brief description 
of the word2vec method proposed by 
Mikolov et al. [3].

B. Word2vec
Word embeddings were revolutionized 
by Mikolov et al. [3], [8] who proposed 

the CBOW and skip-gram models. 
CBOW computes the conditional proba-
bility of a target word given the context 
words surrounding it across a window of 
size .k  On the other hand, the skip-gram 
model does the exact opposite of the 
CBOW model, by predicting the sur-
rounding context words given the central 
target word. The context words are 
assumed to be located symmetrically to 
the target words within a distance equal to 
the window size in both directions. In 
unsupervised settings, the word embed-
ding dimension is determined by the 
accuracy of prediction. As the embedding 
dimension increases, the accuracy of pre-
diction also increases until it converges at 
some point, which is considered the optimal 
embedding dimension as it is the shortest 
without compromising accuracy.

Let us consider a simplified version 
of the CBOW model where only one 
word is considered in the context. 
This essentially replicates a bigram lan
guage model.

The CBOW model is a simple fully 
connected neural network with one 
hidden layer. The input layer, which 
takes the one-hot vector of context 
word has V  neurons while the hidden 
layer has N  neurons. The output layer is 
softmax of all words in the vocabulary. 
The layers are connected by weight 
matrix W RV N! #  and ,W RH V! #l  

respectively. Each word from the vocab-
ulary is finally represented as two 
learned vectors vc  and ,vw  correspond-
ing to context and target word represen-
tations, respectively. Thus, kth  word in 
the vocabulary will have

	 .v W v Wand) ( )c (k,. w .,k= = l � (1)
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The parameters { , }V Vw ci =  are 
learned by defining the objective func-
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gradient as
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In the general CBOW model, all the 
one-hot vectors of context words are 
taken as input simultaneously, i.e,

	 ( ).h W x x xT
1 2 cg= + + + � (5)

One limitation of individual word 
embeddings is their inability to represent 
phrases, where the combination of two 
or more words (e.g., idioms like “hot 
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Figure 3 Representation of the Neural Language Model proposed by Bengio et al. [7]. C(i) is 
the ith word embedding.
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potato” or named entities such as “Bos-
ton Globe”) does not represent the 
combination of meanings of individual 
words. One solution to this problem, as 
explored by Mikolov et al. [3], is to 
identify such phrases based on word 
co-occurrence and train embeddings for 
them separately. More recent methods 
have explored directly learning n-gram 
embeddings from unlabeled data [22].

Another limitation comes from 
learning embeddings based only on a 
small window of surrounding words, 
sometimes words such as good and bad 
share almost the same embedding [23], 
which is problematic if used in tasks 
such as sentiment analysis [24]. At times 
these embeddings cluster semantically-
similar words which have opposing sen-
timent polarities. This leads the down-
stream model used for the sentiment 
analysis task to be unable to identify this 
contrasting polarities leading to poor 
performance. Tang et al. [25] addresses 
this problem by proposing sentiment 
specific word embedding (SSWE). 
Authors incorporate the supervised sen-
timent polarity of text in their loss func-
tions while learning the embeddings.

A general caveat for word embeddings 
is that they are highly dependent on the 
applications in which it is used. Labutov 
and Lipson [26] proposed task specific 
embeddings which retrain the word 
embeddings to align them in the current 
task space. This is very important as train-
ing embeddings from scratch requires large 
amount of time and resource. Mikolov et 
al. [8] tried to address this issue by propos-
ing negative sampling which is frequency-
based sampling of negative terms while 
training the word2vec model.

Traditional word embedding algo-
rithms assign a distinct vector to each 

word. This makes them unable to 
account for polysemy. In a recent work, 
Upadhyay et al. [27] provided an inno-
vative way to address this deficit. The 
authors leveraged multilingual parallel 
data to learn multi-sense word embed-
dings. For example, the English word 
bank, when translated to French provides 
two different words: banc and banque 
representing financial and geographical 
meanings, respectively. Such multilingual 
distributional information helped them 
in accounting for polysemy.

Table 1 provides a directory of existing 
frameworks that are frequently used for 
creating embeddings which are further 
incorporated into deep learning models.

C. Character Embeddings
Word embeddings are able to capture 
syntactic and semantic information, yet 
for tasks such as POS-tagging and NER, 
intra-word morphological and shape 
information can also be very useful. Gen-
erally speaking, building natural language 
understanding systems at the character 
level has attracted certain research atten-
tion [28]–[31]. Better results on morpho-
logically rich languages are reported in 
certain NLP tasks. Santos and Guimaraes 
[30] applied character-level representa-
tions, along with word embeddings for 
NER, achieving state-of-the-art results in 
Portuguese and Spanish corpora. Kim et 
al. [28] showed positive results on build-
ing a neural language model using only 
character embeddings. Ma et al. [32] 
exploited several embeddings, including 
character trigrams, to incorporate proto-
typical and hierarchical information for 
learning pre-trained label embeddings in 
the context of NER.

A common phenomenon for lan-
guages with large vocabularies is the 

unknown word issue or out-of-vocabu-
lary word (OOV) issue. Character 
embeddings naturally deal with it since 
each word is considered as no more than 
a composition of individual letters. In 
languages where text is not composed of 
separated words but individual characters 
and the semantic meaning of words map 
to its compositional characters (such as 
Chinese), building systems at the charac-
ter level is a natural choice to avoid word 
segmentation [33]. Thus, works employ-
ing deep learning applications on such 
languages tend to prefer character 
embeddings over word vectors [34]. For 
example, Peng et al. [35] proved that rad-
ical-level processing could greatly 
improve sentiment classification perfor-
mance. In particular, the authors pro-
posed two types of Chinese radical-based 
hierarchical embeddings, which incorpo-
rate not only semantics at radical and 
character level, but also sentiment infor-
mation. Bojanowski et al. [36] also tried 
to improve the representation of words 
by using character-level information in 
morphologically-rich languages. They 
approached the skip-gram method by 
representing words as bag-of-characters 
n-grams. Their work thus had the effec-
tiveness of the skip-gram model along 
with addressing some persistent issues of 
word embeddings. The method was also 
fast, which allowed training models on 
large corpora quickly. Popularly known 
as FastText, such a method stands out 
over previous methods in terms of speed, 
scalability, and effectiveness.

Apart from character embeddings, 
other approaches have been proposed for 
OOV handling. Herbelot and Baroni [37] 
provided OOV handling on-the-fly by 
initializing the unknown words as the 
sum of the context words and refining 
these words with a high learning rate. 
However, their approach is yet to be 
tested on typical NLP tasks. Pinter et al. 
[38] provided an interesting approach of 
training a character-based model to recre-
ate pre-trained embeddings. This allowed 
them to learn a compositional mapping 
from character to word embedding, thus 
tackling the OOV problem.

Despite the ever growing popularity 
of distributional vectors, recent discussions 

TABLE 1 Frameworks providing embedding tools and methods.

Framework Language URL 

S-Space Java https://github.com/fozziethebeat/S-Space 

Semanticvectors Java https://github.com/semanticvectors/ 

Gensim Python https://radimrehurek.com/gensim/ 

Pydsm Python https://github.com/jimmycallin/pydsm 

Dissect Python http://clic.cimec.unitn.it/composes/toolkit/

FastText Python https://fasttext.cc/ 
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on their relevance in the long run have 
cropped up. For example, Lucy and 
Gauthier [39] has recently tried to evalu-
ate how well the word vectors capture 
the necessary facets of conceptual mean-
ing. The authors have discovered severe 
limitations in perceptual understanding 
of the concepts behind the words, which 
cannot be inferred from distributional 
semantics alone. A possible direction for 
mitigating these deficiencies will be 
grounded learning, which has been gain-
ing popularity in this research domain.

III. Convolutional Neural Networks
Following the popularization of word 
embeddings and its ability to represent 
words in a distributed space, the need 
arose for an effective feature function 
that extracts higher-level features from 
constituting words or n-grams. These 
abstract features would then be used for 
numerous NLP tasks such as sentiment 
analysis, summarization, machine trans-
lation, and question answering (QA). 
CNNs turned out to be the natural 
choice given their effectiveness in com-
puter vision tasks [40]–[42].

The use of CNNs for sentence model-
ing traces back to Collobert and Weston 
[19]. This work used multi-task learning to 
output multiple predictions for NLP tasks 
such as POS tags, chunks, named-entity 
tags, semantic roles, semantically-similar 
words and a language model. A look-up 
table was used to transform each word 
into a vector of user-defined dimensions. 
Thus, an input sequence { , , ..., }s s sn1 2  of 
n words was transformed into a series of 
vectors { , , ..., }w w ws s s2 n1  by applying the 
look-up table to each of its words (Fig. 4).

This can be thought of as a primitive 
word embedding method whose weights 
were learned in the training of the net-
work. In [5], Collobert extended his 
work to propose a general CNN-based 
framework to solve a plethora of NLP 
tasks. Both these works triggered a huge 
popularization of CNNs amongst NLP 
researchers. Given that CNNs had 
already shown their mettle for computer 
vision tasks, it was easier for people to 
believe in their performance.

CNNs have the ability to extract 
salient n-gram features from the input 

sentence to create an informative latent 
semantic representation of the sentence 
for downstream tasks. This application 
was pioneered by Collobert et al. [5], 
Kalchbrenner et al. [43], Kim [44], 
which led to a huge proliferation of 
CNN-based networks in the succeeding 
literature. Below, we describe the work-
ing of a simple CNN-based sentence 
modeling network:

A. Basic CNN

1) Sentence Modeling
For each sentence, let w Ri

d!  repre-
sent the word embedding for the thi  
word in the sentence, where d  is the 
dimension of the word embedding. 
Given that a sentence has n  words, the 
sentence can now be represented as an 
embedding matrix .W R n d! #  Fig. 5 
depicts such a sentence as an input to 
the CNN framework.

Let wi:i j+  refer to the concatenation 
of vectors , , ..., .w w wi i j1+  Convolution 
is performed on this input embedding 
layer. It involves a filter k Rhd!  which is 
applied to a window of h  words to pro-
duce a new feature. For example, a fea-
ture ci  is generated using the window of 
words wi:i h 1+ -  by

	 ( . )w kc f bi:i h 1i
T= ++ - � (6)

where b R!  is the bias term and f  is a 
non-linear activation function, for exam-
ple the hyperbolic tangent. The filter k  is 
applied to all possible windows using the 
same weights to create the feature map.

	 [ , , ..., ] .c c c cn h1 2 1= - + � (7)

In a CNN, a number of convolu-
tional filters, also called kernels (typically 
hundreds), of different widths slide over 
the entire word embedding matrix. 
Each kernel extracts a specific pattern of 
n-gram. A convolution layer is usually 

wo w1 wN –1 

Input
Sentence

Lookup Table

Feature 1

Feature k

Convolution
Layer

Max-Pool
over Time 

Fully Connected Layer

Softmax Classification

Figure 4 CNN framework used to perform word-wise class prediction proposed by Collobert 
and Weston [19].
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followed by a max-pooling strategy, 
{ },maxc c=t  which subsamples the 

input typically by applying a max opera-
tion on each filter. This strategy has two 
primary reasons.

Firstly, max pooling provides a fixed-
length output which is generally required 
for classification. Thus, regardless the size 
of the filters, max pooling always maps the 
input to a fixed dimension of outputs. 
Secondly, it reduces the output’s dimen-
sionality while keeping the most salient 
n-gram features across the whole sen-
tence. This is done in a translation invari-
ant manner where each filter is now able 
to extract a particular feature (e.g., nega-
tions) from anywhere in the sentence and 
add it to the final sentence representation.

The word embeddings can be initial-
ized randomly or pre-trained on a large 
unlabeled corpora (as in Section II). The 
latter option is sometimes found benefi-
cial to performance, especially when the 
amount of labeled data is limited [44]. 
This combination of convolution layer 
followed by max pooling is often stacked 
to create deep CNN networks. These 
sequential convolutions help in improved 
mining of the sentence to grasp a truly 
abstract representation comprising rich 
semantic information. The kernels through 
deeper convolutions cover a larger part of 
the sentence until finally covering it fully 
and creating a global summarization of 
the sentence features.

2) Window Approach
The above-mentioned architecture allows 
for modeling of complete sentences into 
sentence representations. However, many 

NLP tasks, such as NER, POS tagging, 
and SRL, require word-based predictions. 
To adapt CNNs for such tasks, a window 
approach is used, which assumes that the 
tag of a word primarily depends on its 
neighboring words. For each word, thus, a 
fixed-size window surrounding itself is 
assumed and the sub-sentence ranging 
within the window is considered. A 
standalone CNN is applied to this sub-
sentence as explained earlier and predic-
tions are attributed to the word in the 
center of the window. Following this 
approach, Poria et al. [45] employed a 
multi-level deep CNN to tag each word 
in a sentence as a possible aspect or non-
aspect. Coupled with a set of linguistic 
patterns, their ensemble classifier managed 
to perform well in aspect detection.

The ultimate goal of word-level clas-
sification is generally to assign a sequence 
of labels to the entire sentence. In such 
cases, structured prediction techniques 
such as conditional random field (CRF) 
are sometimes employed to better cap-
ture dependencies between adjacent class 
labels and finally generate cohesive label 
sequence giving maximum score to the 
whole sentence [46].

To get a larger contextual range, the 
classic window approach is often coupled 
with a time-delay neural network 
(TDNN) [47]. Here, convolutions are 
performed across all windows throughout 
the sequence. These convolutions are 
generally constrained by defining a kernel 
having a certain width. Thus, while the 
classic window approach only considers 
the words in the window around the 
word to be labeled, TDNN considers all 

windows of words in the sentence at the 
same time. At times, TDNN layers are 
also stacked like CNN architectures to 
extract local features in lower layers and 
global features in higher layers [5].

B. Applications
In this section, we present some of the 
crucial works that employed CNNs on 
NLP tasks to set state-of-the-art bench-
marks in their respective times.

Kim [44] explored using the above 
architecture for a variety of sentence 
classification tasks, including sentiment, 
subjectivity and question type classifica-
tion, showing competitive results. This 
work was quickly adapted by researchers 
given its simple yet effective network. 
After training for a specific task, the ran-
domly initialized convolutional kernels 
became specific n-gram feature detec-
tors that were useful for that target task. 
This simple network, however, had 
many shortcomings with the CNN’s 
inability to model long distance depen-
dencies standing as the main issue.

This issue was partly handled by Kal-
chbrenner et al. [43], who published a 
prominent paper where they proposed a 
dynamic convolutional neural network 
(DCNN) for semantic modeling of sen-
tences. They proposed dynamic k-max 
pooling strategy which, given a sequence 
p selects the k most active features. The 
selection preserved the order of the fea-
tures but was insensitive to their specific 
positions (Fig. 6). Built on the concept of 
TDNN, they added this dynamic k-max 
pooling strategy to create a sentence 
model. This combination allowed filters 
with small width to span across a long 
range within the input sentence, thus 
accumulating crucial information across 
the sentence. In the induced subgraph 
(Fig. 6), higher order features had highly 
variable ranges that could be either short 
and focused or global and long as the 
input sentence. They applied their model 
on multiple tasks, including sentiment 
prediction and question type classifica-
tion, achieving significant results. Overall, 
this work commented on the range of 
individual kernels while trying to model 
contextual semantics and proposed a way 
to extend their reach.

Input Embedding
Sequence of

Sentence

Convolution with
Multiple Filter

Widths and Multiple
Feature Maps 

Max-Pooling
Over Time 

Dense Layer

I

Textual Processing

Love
This

Movie
Very

Much

Softmax

Figure 5 CNN modeling on text.
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Tasks involving sentiment analysis also 
require effective extraction of aspects 
along with their sentiment polarities [48]. 
Ruder et al. [49] applied a CNN where 
in the input they concatenated an aspect 
vector with the word embeddings to get 
competitive results. CNN modeling 
approach varies amongst different length 
of texts. Such differences were seen in 
many works like Johnson and Zhang 
[22], where performance on longer text 
worked well as opposed to shorter texts. 
Wang et al. [50] proposed the usage of 
CNN for modeling representations of 
short texts, which suffer from the lack of 
available context and, thus, require extra 
efforts to create meaningful representa-
tions. The authors proposed semantic 
clustering which introduced multi-scale 
semantic units to be used as external 
knowledge for the short texts. CNN was 
used to combine these units and form 
the overall representation. In fact, this 
requirement of high context information 
can be thought of as a caveat for CNN-
based models. NLP tasks involving 
microtexts using CNN-based methods 
often require the need of additional 
information and external knowledge to 
perform as per expectations. This fact was 
also observed in [51], where authors per-
formed sarcasm detection in Twitter texts 
using a CNN network. Auxiliary support, 
in the form of pre-trained networks 
trained on emotion, sentiment and per-
sonality datasets was used to achieve 
state-of-the-art performance.

CNNs have also been extensively 
used in other tasks. For example, Denil 
et al. [52] applied DCNN to map mean-
ings of words that constitute a sentence 
to that of documents for summarization. 
The DCNN learned convolution filters 
at both the sentence and document 
level, hierarchically learning to capture 
and compose low-level lexical features 
into high-level semantic concepts. The 
focal point of this work was the intro-
duction of a novel visualization tech-
nique of the learned representations, 
which provided insights not only in the 
learning process but also for automatic 
summarization of texts.

CNN models are also suitable for cer-
tain NLP tasks that require semantic 

matching [53]. A similar model to the 
above CNN architecture (Fig. 5) was 
explored in [54] for information retrieval. 
The CNN was used for projecting que-
ries and documents to a fixed-dimension 
semantic space, where cosine similarity 
between the query and documents was 
used for ranking documents regarding a 
specific query. The model attempted to 
extract rich contextual structures in a 
query or a document by considering a 
temporal context window in a word 
sequence. This captured the contextual 
features at the word n-gram level. The 
salient word n-grams is then discovered 
by the convolution and max-pooling lay-
ers which are then aggregated to form 
the overall sentence vector.

In the domain of QA, Yih et al. 
[55] proposed to measure the semantic 
similarity between a question and en-
tries in a knowledge base (KB) to 
determine what supporting fact in the 
KB to look for when answering a 
question. To create semantic repre-
sentations, a CNN similar to the one 
in Fig. 5 was used. Unlike the classifica-
tion setting, the supervision signal came 
from positive or negative text pairs (e.g., 
query-document), instead of class 
labels. Subsequently, Dong et al. [56] 
introduced a mult i-column CNN 
(MCCNN) to analyze and under-
stand questions from multiple aspects 
and create their representations. 
MCCNN used multiple column net-
works to extract information from as-
pects comprising answer types and 

context from the input questions. By 
representing entities and relations in the 
KB with low-dimensional vectors, they 
used question-answer pairs to train the 
CNN model so as to rank candidate 
answers. Severyn and Moschitti [57] 
also used CNN network to model opti-
mal representations of question and 
answer sentences. They proposed  
additional features in the embeddings in 
the form of relational information giv-
en by matching words between the 
question and answer pair. These param-
eters were tuned by the network. This 
s imple network was able to pro-
duce comparable results to state-of-
the-art methods.

CNNs are wired in a way to capture 
the most important information in a sen-
tence. Traditional max-pooling strategies 
perform this in a translation invariant 
form. However, this often misses valuable 
information present in multiple facts 
within the sentence. To overcome this 
loss of information for multiple-event 
modeling, Chen et al. [58] proposed a 
modified pooling strategy: dynamic 
multi-pooling CNN (DMCNN). This 
strategy used a novel dynamic multi-
pooling layer that, as the name suggests, 
incorporates event triggers and argu-
ments to reserve more crucial informa-
tion from the pooling layer.

CNNs inherently provide certain 
required features like local connectivity, 
weight sharing, and pooling. This puts 
forward some degree of invariance 
which is highly desired in many tasks. 

x1 x2 xn
. . . . . . . . x1 x2 xn

. . . . . . . .

Figure 6 Representation of a DCNN subgraph. With dynamic pooling, a filter with small width 
at the higher layers can relate phrases far apart in the input sentence. DCNN was proposed by 
Kalchbrenner et al. [43].
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Speech recognition also requires such 
invariance and, thus, Abdel-Hamid et al. 
[59] used a hybrid CNN-HMM model 
which provided invariance to frequency 
shifts along the frequency axis. This vari-
ability is often found in speech signals 
due to speaker differences. They also 
performed limited weight shar ing 
which led to a smaller number of pool-
ing parameters, resulting in lower com-
putational complexity. Palaz et al. [60] 
performed extensive analysis of CNN-
based speech recognition systems when 
given raw speech as input. They showed 
the ability of CNNs to directly model 
the relationship between raw input and 
phones, creating a robust automatic 
speech recognition system.

Tasks like machine translation re
quire perseverance of sequential infor-
mation and long-term dependency. 
Thus, structurally they are not well suit-
ed for CNN networks, which lack these 
features. Nevertheless, Tu et al. [61] ad-
dressed this task by considering both the 
semantic similarity of the translation 
pair and their respective contexts. Al-
though this method did not address the 
sequence perseverance problem, it al-
lowed them to get competitive results 
amongst other benchmarks.

Overall, CNNs are extremely effec-
tive in mining semantic clues in contex-
tual windows. However, they are very 
data heavy models. They include a large 
number of trainable parameters which 
require huge training data. This poses a 
problem when scarcity of data arises. 
Another persistent issue with CNNs is 
their inability to model long-distance 
contextual information and preserving 
sequential order in their representations 
[43], [61]. Although CNNs prove an 
effective way to capture n-gram features, 
which is approximately sufficient in cer-
tain sentence classification tasks, their 
sensitivity to word order is restricted 
locally and long-term dependencies are 
typically ignored.

IV. Recurrent Neural Networks
RNNs [62] use the idea of processing 
sequential information. The term “recur-
rent” applies as they perform the same 
computation over each token of the 

sequence and each step is dependent 
on the previous computations and results. 
Generally, a fixed-size vector is pro-
duced to represent a sequence by feeding 
tokens one by one to a recurrent unit. In 
a way, RNNs have “memory” over pre-
vious computations and use this infor-
mation in current processing. This template 
is naturally suited for many NLP tasks 
such as language modeling [2], [63], 
[64], machine translation [65]–[67], speech 
recognition [68]–[71], image caption-
ing [72]. This made RNNs increas-
ingly popular for NLP applications in 
recent years.

A. Need for Recurrent Networks
In this section, we analyze the funda-
mental properties that favored the popu-
larization of RNNs in a multitude of 
NLP tasks. Given that an RNN per-
forms sequential processing by modeling 
units in sequence, it has the ability to 
capture the inherent sequential nature 
present in language, where units are 
characters, words or even sentences. 
Words in a language develop their 
semantical meaning based on the previ-
ous words in the sentence. A simple 
example stating this would be the differ-
ence in meaning between “dog” and 
“hot dog”. RNNs are tailor-made for 
modeling such context dependencies in 
language and similar sequence modeling 
tasks, which turned to be a strong moti-
vation for researchers to use RNNs over 
CNNs in these areas.

Another factor aiding RNN’s suit-
ability for sequence modeling tasks lies 
in its ability to model variable length of 
text, including very long sentences, 
paragraphs and even documents [73]. 
Unlike CNNs, RNNs have flexible 
computational steps that provide better 
modeling capability and create the pos-
sibility to capture unbounded context. 
This ability became one of the selling 
points of major works using RNNs [74].

Many NLP tasks require semantic 
modeling over the whole sentence. This 
involves creating a gist of the sentence 
in a fixed dimensional hyperspace. 
RNN’s ability to summarize sentences 
led to their increased usage for tasks like 
machine translation [75] where the 

whole sentence is summarized to a fixed 
vector and then mapped back to the 
variable-length target sequence.

RNN also provides the network sup-
port to perform time distributed joint 
processing. Most of the sequence label-
ing tasks like POS tagging [31] come 
under this domain. More specific use 
cases include applications such as multi-
label text categorization [76], multi-
modal sentiment analysis [77]–[79], and 
subjectivity detection [80].

The above points enlist some of the 
focal reasons that motivated researchers 
to opt for RNNs. However, it would be 
gravely wrong to make conclusions on 
the superiority of RNNs over other 
deep networks. Recently, several works 
provided contrasting evidence on the 
superiority of CNNs over RNNs. Even 
in RNN-suited tasks like language 
modeling, CNNs achieved competitive 
performance over RNNs [81]. Both 
CNNs and RNNs have different objec-
tives when modeling a sentence. While 
RNNs try to create a composition of an 
arbitrarily long sentence along with 
unbounded context, CNNs try to 
extract the most important n-grams.

Yin et al. [82] provided interesting 
insights on the comparative performance 
between RNNs and CNNs. After testing 
on multiple NLP tasks that included sen-
timent classification, QA, and POS tag-
ging, they concluded that there is no 
clear winner: the performance of each 
network depends on the global seman-
tics required by the task itself.

Below, we discuss some of the RNN 
models extensively used in the literature.

B. RNN Models

1) Simple RNN
In the context of NLP, RNNs are pri-
marily based on Elman network [62] 
and they are originally three-layer net-
works. Fig. 7 illustrates a more general 
RNN which is unfolded across time to 
accommodate a whole sequence. In the 
figure, xt  is taken as the input to the 
network at time step t  and st  repre-
sents the hidden state at the same time 
step. Calculation of st  is based as per 
the equation:
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	 ( ) .s x sf U Wt t t 1= + - � (8)

Thus, st  is calculated based on the 
current input and the previous time step’s 
hidden state. The function f  is taken to 
be a non-linear transformation such as 

,tanh  ReLU  and , ,U V W  account for 
weights that are shared across time. In the 
context of NLP, xt  typically comprises of 
one-hot encodings or embeddings. At 
times, they can also be abstract represen-
tations of textual content. tq  illustrates 
the output of the network which is also 
often subjected to non-linearity, espe-
cially when the network contains further 
layers downstream.

The hidden state of the RNN is typ-
ically considered to be its most crucial 
element. As stated before, it can be con-
sidered as the network’s memory ele-
ment that accumulates information from 
other time steps. In practice, however, 
these simple RNN networks suffer from 
the infamous vanishing gradient problem, 
which makes it really hard to learn and 
tune the parameters of the earlier layers 
in the network.

This limitation was overcome by 
various networks such as long short-
term memory (LSTM), gated recur-
rent units (GRUs), and residual net-
works (ResNets), where the first two 
are the most used RNN variants in 
NLP applications.

2) Long Short-Term Memory
LSTM [83], [84] (Fig. 8) has additional 
“forget” gates over the simple RNN, 
which allows the error to back-propa-
gate through an unlimited number of 
time steps. Consisting of three gates: 
input, forget and output gates, it calcu-
lates the hidden state by taking a combi-

nation of these three gates as per the 
equations below:
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3) Gated Recurrent Units
Another gated RNN variant called GRU 
[75] (Fig. 8) of lesser complexity was 
invented with empirically similar perfor-
mances to LSTM in most tasks. GRU 
comprises of two gates, reset gate and 
update gate, and handles the flow of infor-
mation like an LSTM without a memory 
unit. Thus, it exposes the whole hidden 
content without any control. GRU can be 
a more efficient RNN than LSTM. The 
working of GRU is as follows:

	 ( . . )z x hU Wt t 1z zv= + - � (15)

	 ( . . )r x hU Wt t 1r rv= + - � (16)

	 ( . . ( ))tanhs x rU W ht tz s t 19= + - �(17)

	 ( ) .h z s z h1t t t 19 9= - + - � (18)

Researchers often face the dilemma 
of choosing the appropriate RNN. This 
also extends to developers working in 
NLP. Throughout the history, most of 
the choices over the RNN variant 
tended to be heuristic. Chung et al. [74] 
did a critical comparative evaluation of 
the three RNN variants mentioned 
above, although not on NLP tasks. They 
evaluated their work on tasks relating to 
polyphonic music modeling and speech 
signal modeling. Their evaluation clearly 
demonstrated the superiority of the 
gated units (LSTM and GRU) over the 
traditional simple RNN (in their case, 
using tanh activation). However, they 
could not make any concrete conclusion 
about which of the two gating units was 
better. This fact has been noted in other 
works too and, thus, people often lever-
age on other factors like computing 
power while choosing between the two.

C. Applications

1) RNN for Word-Level Classification
RNNs have had a huge presence in the 
field of word-level classification. Many 
of their applications stand as state of the 
art in their respective tasks. Lample et al. 
[85] proposed to use bidirectional 
LSTM for NER. The network captured 
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arbitrarily long context information 
around the target word (curbing the 
limitation of a fixed window size) result-
ing in two fixed-size vector, on top of 
which another fully-connected layer was 
built. They used a CRF layer at last for 
the final entity tagging.

RNNs have also shown considerable 
improvement in language modeling over 
traditional methods based on count statis-
tics. Pioneering work in this field was 
done by Graves [86], who introduced the 
effectiveness of RNNs in modeling com-
plex sequences with long range context 
structures. He also proposed deep RNNs 
where multiple layers of hidden states 
were used to enhance the modeling. This 
work established the usage of RNNs on 
tasks beyond the context of NLP. Later, 
Sundermeyer et al. [87] compared the gain 
obtained by replacing a feed-forward neu-
ral network with an RNN when condi-
tioning the prediction of a word on the 
words ahead. In their work, they proposed 
a typical hierarchy in neural network 
architectures where feed-forward neural 
networks gave considerable improvement 
over traditional count-based language 
models, which in turn were superseded by 
RNNs and later by LSTMs. An important 
point that they mentioned was the appli-
cability of their conclusions to a variety of 
other tasks such as statistical machine 
translation [88].

2) RNN for Sentence-Level 
Classification
Wang et al. [24] proposed encoding entire 
tweets with LSTM, whose hidden state is 

used for predicting sentiment polarity. 
This simple strategy proved competitive 
to the more complex DCNN structure 
by Kalchbrenner et al. [43] designed to 
endow CNN models with ability to cap-
ture long-term dependencies. In a special 
case studying negation phrase, the authors 
also showed that the dynamics of LSTM 
gates can capture the reversal effect of the 
word “not”.

Similar to CNN, the hidden state of 
an RNN can also be used for semantic 
matching between texts. In dialogue sys-
tems, Lowe et al. [89] proposed to match 
a message with candidate responses with 
Dual-LSTM, which encodes both the 
message and response as fixed-size vectors 
and then measure their inner product as 
the basis to rank candidate responses.

3) RNN for Generating Language
A challenging task in NLP is generating 
natural language, which is another natural 
application of RNNs. Conditioned on 
textual or visual data, deep LSTMs have 
been shown to generate reasonable task-
specific text in tasks such as machine 
translation, image captioning, etc.

In [67], the authors proposed a gen-
eral deep LSTM encoder-decoder 
framework that maps a sequence to 
another sequence. One LSTM is used to 
encode the “source” sequence as a fixed-
size vector, which can be text in the 
original language (machine translation), 
the question to be answered (QA) or the 
message to be replied to (dialogue sys-
tems). The vector is used as the initial 
state of another LSTM, named the 

decoder. The decoder generates tokens 
one by one, while updating its hidden 
state with the last generated token.

Sutskever et al. [67] experimented 
with 4-layer LSTM on a machine trans-
lation task in an end-to-end fashion, 
showing competitive results. In [91], the 
same encoder-decoder framework is 
employed to model human conversations. 
When trained on more than 100 million 
message-response pairs, the LSTM de
coder is able to generate very interesting 
responses in the open domain. It is also 
common to condition the LSTM de
coder on additional signal to achieve cer-
tain effects. In [92], the authors proposed 
to condition the decoder on a constant 
persona vector that captures the personal 
information of an individual speaker. In 
the above cases, language is generated 
based mainly on the semantic vector rep-
resenting textual input. Similar frame-
works have also been successfully used in 
image-based language generation, where 
visual features are used to condition the 
LSTM decoder (Fig. 9).

Visual QA is another task that 
requires language generation based on 
both textual and visual clues. Malinowski 
et al. [93] were the first to provide an 
end-to-end deep learning solution 
where they predicted the answer as a 
sequence of words conditioned on the 
input image modeled by a CNN and 
text modeled by an LSTM.

D. Attention Mechanism
One potential problem that the tradi-
tional encoder-decoder framework faces 
is that the encoder at times is forced to 
encode information which might not be 
fully relevant to the task at hand. The 
problem arises also if the input is long or 
very information-rich and selective 
encoding is not possible.

For example, the task of text summa-
rization can be cast as a sequence-to-
sequence learning problem, where the 
input is the original text and the output 
is the condensed version. Intuitively, it is 
unrealistic to expect a fixed-size vector to 
encode all information in a piece of text 
whose length can potentially be very 
long. Similar problems have also been 
reported in machine translation [94].
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Figure 9 Image captioning using CNN image embedder followed by LSTM decoder. This 
architecture was proposed by Vinyals et al. [90].
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In tasks such as text summarization 
and machine translation, certain align-
ment exists between the input text and 
the output text, which means that each 
token generation step is highly related to 
a certain part of the input text. This intu-
ition inspires the attention mechanism. 
This mechanism attempts to ease the 
above problems by allowing the decoder 
to refer back to the input sequence. Spe-
cifically during decoding, in addition to 
the last hidden state and generated token, 
the decoder is also conditioned on a 
“context” vector calculated based on the 
input hidden state sequence.

Bahdanau et al. [94] first applied the 
attention mechanism to machine trans-
lation, which improved the perfor-
mance especially for long sequences. In 
their work, the attention signal over the 
input hidden state sequence is deter-
mined with a multi-layer perceptron by 
the last hidden state of the decoder. By 
visualizing the attention signal over the 
input sequence during each decod-
ing step, a clear alignment between 
the source and target language can 
be demonstrated.

A similar approach was applied to the 
task of text summarization by Rush et al. 
[95] where each output word in the 
summary was conditioned on the input 
sentence through an attention mecha-
nism. The authors performed abstractive 
summarization which is not very con-
ventional as opposed to extractive sum-
marization, but can be scaled up to large 
data with minimal linguistic input.

In image captioning, Xu et al. [96] 
conditioned the LSTM decoder on dif-
ferent parts of the input image during 
each decoding step. Attention signal was 
determined by the previous hidden state 
and CNN features. In [97], the authors 
cast the syntactical parsing problem as a 
sequence-to-sequence learning task by 
linearizing the parsing tree. The atten-
tion mechanism proved to be more 
data-efficient in this work. A further step 
in referring to the input sequence was 
to directly copy words or sub-sequences 
of the input onto the output sequence 
under a certain condition [98], which 
was useful in tasks such as dialogue gen-
eration and text summarization. Copy-

ing or generation was chosen at each 
time step during decoding [99].

In aspect-based sentiment analysis, 
Wang et al. [100] proposed an attention-
based solution where they used aspect 
embeddings to provide additional sup-
port during classification (Fig. 10). The 
attention module focused on selective 
regions of the sentence which affected 
the aspect to be classified. Recently, Ma 
et al. [101] augmented LSTM with a 
hierarchical attention mechanism con-
sisting of a target-level attention and a 
sentence-level attention to exploit com-
monsense knowledge for targeted 
aspect-based sentiment analysis.

Given the intuitive applicability of 
attention modules, they are still being 
actively investigated by NLP researchers 
and adopted for an increasing number 
of applications.

V. Recursive Neural Networks
RNNs represent a natural way to model 
sequences. Arguably, however, language 
exhibits a natural recursive structure, 
where words and sub-phrases combine 
into phrases in a hierarchical manner. 
Such structure can be represented by a 
constituency parsing tree. Thus, tree-
structured models have been used to 
better make use of such syntactic inter-

pretations of sentence structure [4]. Spe-
cifically, in a recursive neural network, 
the representation of each non-terminal 
node in a parsing tree is determined by 
the representations of all its children.

A. Basic Model
In this section, we describe the basic 
structure of recursive neural networks. 
As shown in Fig. 11, the network g
defines a compositional function on the 
representations of phrases or words ( ,b c
or , )a p1  to compute the representation 
of a higher-level phrase (p1  or ).p2  The 
representations of all nodes take the 
same form.

Weighted Combination
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Figure 10 Aspect classification using attention. The original attention-based model in this 
application was proposed by Wang et al. [100].

p2 = g (a, p1)
(on the mat)

p1 = g (b, c)
(the mat)

a (on) b (the) c (mat)

Figure 11 Recursive neural networks 
iteratively form high-level representation 
from lower-level representations.



66    IEEE Computational intelligence magazine | august 2018

In [4], the authors described multiple 
variations of this model. In its simplest 
form, g  is defined as:

,tanh tanhp W
b
c p W

a
p1 2

1
= =c cm m; ;E E

�
(19)

in which the representation for each 
node is a d-dimensional vector and 

.W RD D2! #

Another variation is the MV-RNN 
[102]. The idea is to represent every 
word and phrase as both a matrix and a 
vector. When two constituents are com-
bined, the matrix of one is multiplied 
with the vector of the other:

,tanh tanhp W
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B
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in which , , ,, , ,b c p B C PR RD D D
1 1! ! #  

and .W RM
D D2! #  Compared to the 

vanilla form, MV-RNN parameterizes 
the compositional function with matri-
ces corresponding to the constituents.

The recursive neural tensor network 
(RNTN) is proposed to introduce more 
interaction between the input vectors 
without making the number of parame-
ters exceptionally large like MV-RNN. 
RNTN is defined by:
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where V R D D D2 2! # #  is a tensor that 
defines multiple bilinear forms.

B. Applications
One natural application of recursive 
neural networks is parsing [10]. A scor-
ing function is defined on the phrase 
representation to calculate the plausibili-
ty of that phrase. Beam search is usually 
applied for searching the best tree. The 

model is trained with the max-margin 
objective [103].

Based on recursive neural networks 
and the parsing tree, Socher et al. [4] 
proposed a phrase-level sentiment an
alysis framework, where each node in 
the parsing tree can be assigned a sen-
timent label.

Socher et al. [102] classified semantic 
relationships such as cause-effect or 
topic-message between nominals in a 
sentence by building a single composi-
tional semantics for the minimal constit-
uent including both terms. Bowman et 
al. [104] proposed to classify the logical 
relationship between sentences with 
recursive neural networks. The represen-
tations for both sentences are fed to 
another neural network for relationship 
classification. They show that both 
vanilla and tensor versions of the recur-
sive unit performed competitively in a 
textual entailment dataset.

To avoid the gradient vanishing 
problem, LSTM units have also been 
applied to tree structures in [105]. The 
authors showed improved sentence rep-
resentation over linear LSTM models, 
as clear improvement in sentiment 
analysis and sentence relatedness tests 
was observed.

VI. Deep Reinforced Models and 
Deep Unsupervised Learning

A. Reinforcement Learning for 
Sequence Generation
Reinforcement learning is a method of 
training an agent to perform discrete 
actions before obtaining a reward. In 
NLP, tasks concerning language genera-
tion can sometimes be cast as reinforce-
ment learning problems.

In its original formulation, RNN 
language generators are typically trained 
by maximizing the likelihood of each 

token in the ground-truth sequence 
given the current hidden state and the 
previous tokens. Termed “teacher forc-
ing”, this training scheme provides the 
real sequence prefix to the generator 
during each generation (loss evaluation) 
step. At test time, however, ground-truth 
tokens are then replaced by a token gen-
erated by the model itself. This discrep-
ancy between training and inference, 
termed “exposure bias” [106], [107], can 
yield errors that can accumulate quickly 
along the generated sequence.

Another problem with the word-
level maximum likelihood strategy, 
when training auto-regressive language 
generation models, is that the training 
objective is different from the test met-
ric. It is unclear how the n-gram overlap 
based metrics (BLEU, ROUGE) used to 
evaluate these tasks (machine translation, 
dialogue systems, etc.) can be optimized 
with the word-level training strategy. 
Empirically, dialogue systems trained 
with word-level maximum likelihood 
also tend to produce dull and short-
sighted responses [108], while text sum-
marization tends to produce incoherent 
or repetitive summaries [99].

Reinforcement learning offers a pro-
spective to solve the above problems to a 
certain extent. In order to optimize the 
non-differentiable evaluation metrics di-
rectly, Ranzato et al. [107] applied the 
REINFORCE algorithm [109] to train 
RNN-based models for several se-
quence generation tasks (e.g., text sum-
marization, machine translation and 
image captioning), leading to improve-
ments compared to previous supervised 
learning methods. In such a framework, 
the generative model (RNN) is viewed 
as an agent, which interacts with the ex-
ternal environment (the words and the 
context vector it sees as input at every 
time step). The parameters of this agent 
defines a policy, whose execution results 
in the agent picking an action, which 
refers to predicting the next word in the 
sequence at each time step. After taking 
an action the agent updates its internal 
state (the hidden units of RNN). Once 
the agent has reached the end of a se-
quence, it observes a reward. This reward 
can be any developer-defined metric 

Recurrent Neural Networks use the idea of processing 
sequential information. The term “recurrent” applies as 
they perform the same computation over each token  
of the sequence and each step is dependent on the 
previous computations and results.
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tailored to a specific task. For example, 
Li et al. [108] defined 3 rewards for a 
generated sentence based on ease of an-
swering, information flow, and seman-
tic coherence.

There are two well-known shortcom-
ings of reinforcement learning. To make 
reinforcement learning tractable, it is 
desired to carefully handle the state and 
action space [110], [111], which in the 
end may restrict expressive power and 
learning capacity of the model. Secondly, 
the need for training the reward func-
tions makes such models hard to design 
and measure at run time [112], [113].

Another approach for sequence-level 
supervision is to use the adversarial 
training technique [114], where the 
training objective for the language gen-
erator is to fool another discrimina-
tor trained to distinguish generated 
sequences from real sequences. The gen-
erator G  and the discriminator D  are 
trained jointly in a min-max game 
which ideally leads to ,G  generating 
sequences indistinguishable from real 
ones. This approach can be seen as a 
var iation of generative adversar ial 
networks in [114], where G  and D  are 
conditioned on certain stimuli (for ex-
ample, the source image in the task of 
image captioning). In practice, the above 
scheme can be realized under the rein-
forcement learning paradigm with poli-
cy gradient. For dialogue systems, the 
discriminator is analogous to a human 
Turing tester, who discriminates be-
tween human and machine-produced 
dialogues [115].

B. Unsupervised Sentence 
Representation Learning
Similar to word embeddings, distributed 
representation for sentences can also be 
learned in an unsupervised fashion. The 
result of such unsupervised learning are 
“sentence encoders”, which map arbi-
trary sentences to fixed-size vectors that 
can capture their semantic and syntactic 
properties. Usually an auxiliary task has 
to be defined for the learning process.

Similar to the skip-gram model [8] 
for learning word embeddings, the skip-
thought model [116] was proposed for 
learning sentence representation, where 

the auxiliary task was to predict two 
adjacent sentences (before and after) 
based on the given sentence. The 
seq2seq model was employed for this 
learning task. One LSTM encoded the 
sentence to a vector (distributed repre-
sentation). Two other LSTMs decoded 
such representation to generate the tar-
get sequences. The standard seq2seq 
training process was used. After training, 
the encoder could be seen as a generic 
feature extractor (word embeddings 
were also learned in the same time).

Kiros et al. [116] verified the quality 
of the learned sentence encoder on a 
range of sentence classification tasks, 
showing competitive results with a sim-
ple linear model based on the static fea-
ture vectors. However, the sentence 
encoder can also be fine-tuned in the 
supervised learning task as part of the 
classifier. Dai and Le [117] investigated 
the use of the decoder to reconstruct the 
encoded sentence itself, which resembled 
an autoencoder [118].

Language modeling could also be 
used as an auxiliary task when training 
LSTM encoders, where the supervision 
signal came from the prediction of the 
next token. Dai and Le [117] conducted 
experiments on initializing LSTM mod-
els with learned parameters on a variety 
of tasks. They showed that pre-training 
the sentence encoder on a large unsu-
pervised corpus yielded better accuracy 
than only pre-training word embeddings. 
Also, predicting the next token turned 
out to be a worse auxiliary objective 
than reconstructing the sentence itself, as 
the LSTM hidden state was only respon-
sible for a rather short-term objective.

C. Deep Generative Models
Recent success in generating realistic 
images has driven a series of efforts on 
applying deep generative models to text 

data. The promise of such research is to 
discover rich structure in natural lan-
guage while generating realistic sentences 
from a latent code space. In this section, 
we review recent research on achieving 
this goal with variational autoencoders 
(VAEs) [119] and generative adversarial 
networks (GANs) [114].

Standard sentence autoencoders, as in 
the last section, do not impose any con-
straint on the latent space, as a result, 
they fail when generating realistic sen-
tences from arbitrary latent representa-
tions [120]. The representations of these 
sentences may often occupy a small 
region in the hidden space and most of 
regions in the hidden space do not nec-
essarily map to a realistic sentence [121]. 
They cannot be used to assign probabili-
ties to sentences or to sample novel sen-
tences [120].

The VAE imposes a prior distribu-
tion on the hidden code space which 
makes it possible to draw proper samples 
from the model. It modifies the autoen-
coder architecture by replacing the 
deterministic encoder function with a 
learned posterior recognition model. 
The model consists of encoder and gen-
erator networks which encode data 
examples to latent representation and 
generate samples from the latent space, 
respectively. It is trained by maximizing 
a variational lower bound on the log-
likelihood of observed data under the 
generative model.

Bowman et al. [120] proposed an 
RNN-based variational autoencoder 
generative model that incorporated dis-
tributed latent representations of entire 
sentences (Fig. 12). Unlike vanilla RNN 
language models, this model worked 
from an explicit global sentence repre-
sentation. Samples from the prior over 
these sentence representations produced 
diverse and well-formed sentences.

Recent success in generating realistic images has 
driven a series of efforts on applying deep generative 
models to text data. The promise of such research is 
to discover rich structure in natural language while 
generating realistic sentences from a latent code space.
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Hu et al. [122] proposed generating 
sentences whose attributes are con-
trolled by learning disentangled latent 
representations with designated seman-
tics. The authors augmented the latent 
code in the VAE with a set of structured 
variables, each targeting a salient and 
independent semantic feature of sen-
tences. The model incorporated VAE 
and attribute discriminators, in which 
the VAE component trained the genera-
tor to reconstruct real sentences for gen-
erating plausible text, while the discrim-
inators forced the generator to produce 
attributes coherent with the structured 
code. When trained on a large number 
of unsupervised sentences and a small 
number of labeled sentences, Hu et al. 
[122] showed that the model was able to 
generate plausible sentences conditioned 
on two major attributes of English: tense 
and sentiment.

GAN is another class of generative 
model composed of two competing 
networks. A generative neural network 
decodes latent representation to a data 
instance, while the discriminative net-
work is simultaneously taught to dis-

criminate between instances from the 
true data distribution and synthesized 
instances produced by the generator. 
GAN does not explicitly represent the 
true data distribution ( ).p x

Zhang et al. [121] proposed a frame-
work for employing LSTM and CNN 
for adversarial training to generate realis-
tic text. The latent code z  was fed to the 
LSTM generator at every time step. 
CNN acted as a binary sentence classifier 
which discriminated between real data 
and generated samples. One problem 
with applying GAN to text is that the 
gradients from the discriminator cannot 
properly back-propagate through discrete 
variables. In [121], this problem was 
solved by making the word prediction at 
every time “soft” at the word embedding 
space. Yu et al. [123] proposed to bypass 
this problem by modeling the generator 
as a stochastic policy. The reward signal 
came from the GAN discriminator 
judged on a complete sequence, and was 
passed back to the intermediate state-
action steps using Monte Carlo search.

The evaluation of deep generative 
models has been challenging. For text, it 

is possible to create oracle training data 
from a fixed set of grammars and then 
evaluate generative models based on 
whether (or how well) the generated 
samples agree with the predefined 
grammar [124]. Another strategy is to 
evaluate BLEU scores of samples on a 
large amount of unseen test data. The 
ability to generate similar sentences to 
unseen real data is considered a mea-
surement of quality [123].

VII. Memory-Augmented Networks
The attention mechanism stores a series 
of hidden vectors of the encoder, which 
the decoder is allowed to access during 
the generation of each token. Here, the 
hidden vectors of the encoder can be 
seen as entries of the model’s “internal 
memory”. Recently, there has been a 
surge of interest in coupling neural net-
works with a form of memory, which 
the model can interact with.

In [135], the authors proposed mem-
ory networks for QA tasks. In synthetic 
QA, a series of statements (memory 
entries) were provided to the model as 
potential supporting facts to the ques-
tion. The model learned to retrieve one 
entry at a time from memory based on 
the question and previously retrieved 
memory. In large-scale realistic QA, a 
large set of commonsense knowledge in 
the form of (subject, relation, object) tri-
ples were used as memory.

Sukhbaatar et al. [136] extended this 
work and proposed end-to-end mem-
ory networks, where memory entries 
were retrieved in a “soft” manner with 
attention mechanism, thus enabling end-
to-end training. Multiple rounds (hops) 
of information retrieval from memory 
were shown to be essential to good per-
formance and the model was able to 
retrieve and reason about several sup-
porting facts to answer a specific ques-
tion. They also showed a special use of 
the model for language modeling, 
where each word in the sentence was 
seen as a memory entry. With multiple 
hops, the model yielded results compa-
rable to deep LSTM models.

Furthermore, dynamic memory net-
works (DMN) [128] improved upon 
previous memory-based models by 
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Figure 12 RNN-based VAE network for sentence generation proposed by Bowman et al. [120].

A generative neural network decodes latent representation 
to a data instance, while the discriminative network is 
simultaneously taught to discriminate between instances 
from the true data distribution and synthesized instances 
produced by the generator.
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employing neural network models for in-
put representation, attention, and answer 
mechanisms. The resulting model was ap-
plicable to a wide range of NLP tasks 
(QA, POS tagging, and sentiment analysis), 
as every task could be cast to the <memo-
ry, question, answer> triple format. Xiong 
et al. [137] applied the same model to vi-
sual QA and proved that the memory 
module was applicable to visual signals.

VIII. Performance of Different 
Models on Different NLP Tasks
We summarize the performance of a 
series of deep learning methods on stan-
dard datasets developed in recent years 
on 7 major NLP topics in Tables 2–7. 
Our goal is to show the readers com-
mon datasets used in the community 
and state-of-the-art results along with 
different models.

A. POS Tagging
The WSJ-PTB (the Wall Street Journal 
part of the Penn Treebank Dataset) cor-
pus contains 1.17 million tokens and has 

been widely used for developing and 
evaluating POS tagg ing systems. 
Giménez and Marquez [125] employed 
one-against-all SVM based on manual-
ly-defined features within a seven-
word window, in which some basic 
n-gram patterns were evaluated to form 
binary features such as: “previous word is 
the”, “two preceding tags are DT NN”, 
etc. One characteristic of the POS tag-
ging problem was the strong dependen-

cy between adjacent tags. With a simple 
left-to-right tagging scheme, this meth-
od modeled dependencies between 
adjacent tags only by feature engineer-
ing. In an effort to reduce feature engi-
neering, Collobert et al. [5] relied on 
only word embeddings within the word 
window with a multi-layer perceptron. 
Incorporating CRF was proven useful 
in [5]. Santos and Zadrozny [31] concat-
enated word embeddings with character 

TABLE 2 POS tagging.

Paper Model WSJ-PTB (per-token accuracy %)

Giménez and Marquez [125] SVM with manual feature pattern 97.16 

Collobert et al. [5] MLP with word embeddings + CRF 97.29 

Santos and Zadrozny [31] MLP with character + word embeddings 97.32 

Huang et al. [126] LSTM 97.29 

Huang et al. [126] Bidirectional LSTM 97.40 

Huang et al. [126] LSTM-CRF 97.54 

Huang et al. [126] Bidirectional LSTM-CRF 97.55 

Andor et al. [127] Transition-based neural network 97.45 

Kumar et al. [128] DMN 97.56 

TABLE 3 Parsing (UAS/LAS = Unlabeled/labeled Attachment Score; WSJ = The Wall Street Journal Section of Penn Treebank).

Parsing type Paper Model WSJ 

Dependency Parsing Chen and Manning [129] Fully-connected NN with features including POS 91.8/89.6 (UAS/LAS) 

Weiss et al. [130] Deep fully-connected NN with features including POS 94.3/92.4 (UAS/LAS) 

Dyer et al. [131] Stack-LSTM 93.1/90.9 (UAS/LAS) 

Zhou et al. [132] Beam contrastive model 93.31/92.37 (UAS/LAS)

Constituency Parsing Petrov et al. [133] Probabilistic context-free grammars (PCFG) 91.8 (F1 Score) 

Socher et al. [10] Recursive neural networks 90.29 (F1 Score) 

Zhu et al. [134] Feature-based transition parsing 91.3 (F1 Score) 

Vinyals et al. [97] seq2seq learning with LSTM+Attention 93.5 (F1 Score) 

TABLE 4 Named-Entity Recognition.

Paper Model CoNLL 2003 (F1%)

Collobert et al. [5] MLP with word 
embeddings+gazetteer 

89.59 

Passos et al. [138] Lexicon Infused Phrase Embeddings 90.90 

Chiu and Nichols [139] Bi-LSTM with word+char+lexicon 
embeddings

90.77 

Luo et al. [140] Semi-CRF jointly trained with linking 91.20 

Lample et al. [85] Bi-LSTM-CRF with word+char 
embeddings 

90.94 

Lample et al. [85] Bi-LSTM with word+char embeddings 89.15 

Strubell et al. [141] Dilated CNN with CRF 90.54 
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embeddings to better exploit morpho-
logical clues. In [31], the authors did not 
consider CRF, but since word-level 
decision was made on a context win-
dow, dependencies between adjacent 
tags were modeled implicitly. Huang  
et al. [126] concatenated word embed-
dings and manually-designed word-level 
features and employed bidirectional 
LSTM to model arbitrarily long context. 
A series of ablative analysis suggested that 
bi-directionality and CRF both boosted 
performance. Andor et al. [127] showed a 
transition-based approach that produces 
competitive result with a simple feed-
forward neural network. When applied 
to sequence tagging tasks, DMNs [128] 
essentially allowed for attending over the 

context multiple times by treating each 
RNN hidden state as a memory entry, 
each time focusing on different parts of 
the context.

B. Parsing
There are two types of parsing: depen-
dency parsing, which connects individu-
al words with their relations, and 
constituency parsing, which iteratively 
breaks text into sub-phrases. Transition-
based methods are a popular choice 
since they are linear in the length of the 
sentence. The parser makes a series of 
decisions that read words sequentially 
from a buffer and combine them incre-
mentally into the syntactic structure 
[129]. At each time step, the decision is 

made based on a stack containing avail-
able tree nodes, a buffer containing 
unread words and the obtained set of 
dependency arcs. Chen and Manning 
[129] modeled the decision making at 
each time step with a neural network 
with one hidden layer. The input layer 
contained embeddings of certain words, 
POS tags and arc labels, which came 
from the stack, the buffer and the set of 
arc labels.

Tu et al. [61] extended the work of 
Chen and Manning [129] by employing 
a deeper model with 2 hidden layers. 
However, both Tu et al. [61] and Chen 
and Manning [129] relied on manual 
feature selecting from the parser state, 
and they only took into account a lim-
ited number of latest tokens. Dyer et al. 
[131] proposed stack-LSTMs to model 
arbitrarily long history. The end pointer 
of the stack changed position as the 
stack of tree nodes could be pushed and 
popped. Zhou et al. [132] integrated 
beam search and contrastive learning for 
better optimization.

Transition-based models were applied 
to constituency parsing as well. Zhu et al. 
[134] based each transition action on 
features such as the POS tags and con-
stituent labels of the top few words of 
the stack and the buffer. By uniquely 
representing the parsing tree with a lin-
ear sequence of labels, Vinyals et al. [97] 

TABLE 5 Semantic Role Labeling.

Paper Model CoNLL2005 (F1%) CoNLL2012 (F1%)

Collobert et al. [5] CNN with parsing features 76.06 

Täckström et al. [142] Manual features with DP for inference 78.6 79.4 

Zhou and Xu [143] Bidirectional LSTM 81.07 81.27 

He et al. [144] Bidirectional LSTM with highway connections 83.2 83.4 

TABLE 6 Sentiment Classification (SST-1 = Stanford Sentiment Treebank,  
fine-grained 5 classes Socher et al. [4]; SST-2: the binary version of SST-1;  
Numbers are accuracies (%)).

Paper Model SST-1 SST-2

Socher et al. [4] Recursive Neural Tensor Network 45.7 85.4 

Kim [44] Multichannel CNN 47.4 88.1 

Kalchbrenner et al. [43] DCNN with k-max pooling 48.5 86.8 

Tai et al. [105] Bidirectional LSTM 48.5 87.2 

Le and Mikolov [145] Paragraph Vector 48.7 87.8 

Tai et al. [105] Constituency Tree-LSTM 51.0 88.0 

Yu et al. [146] Tree-LSTM with refined word 
embeddings

54.0 90.3 

Kumar et al. [128] DMN 52.1 88.6 

TABLE 7 Machine translation (Numbers are BLEU scores).

Paper Model 
WMT2014 
English2German

WMT2014 
English2French

Cho et al. [75] Phrase table with neural features 34.50 

Sutskever et al. [67] Reranking phrase-based SMT best list with LSTM seq2seq 36.5 

Wu et al. [147] Residual LSTM seq2seq + Reinforcement learning refining 26.30 41.16 

Gehring et al. [148] seq2seq with CNN 26.36 41.29 

Vaswani et al. [149] Attention mechanism 28.4 41.0 
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applied the seq2seq learning method to 
this problem.

C. Named-Entity Recognition
CoNLL 2003 has been a standard Eng-
lish dataset for NER, which concentrates 
on four types of named entities: people, 
locations, organizations and miscellaneous 
entities. NER is one of the NLP prob-
lems where lexicons can be very useful. 
Collobert et al. [5] first achieved compet-
itive results with neural structures aug-
mented by gazetteer features. Chiu and 
Nichols [139] concatenated lexicon fea-
tures, character embeddings and word 
embeddings and fed them as input to a 
bidirectional LSTM. On the other hand, 
Lample et al. [85] only relied on charac-
ter and word embeddings, with pre-train-
ing embeddings on large unsupervised 
corpora, they achieved competitive results 
without using any lexicon. Similar to 
POS tagging, CRF also boosted the per-
formance of NER, as demonstrated by 
the comparison in [85]. Overall, we see 
that bidirectional LSTM with CRF acts 
as a strong model for NLP problems 
related to structured prediction.

Passos et al. [138] proposed to modify 
skip-gram models to better learn entity-
type related word embeddings that can 
leverage information from relevant lexi-
cons. Luo et al. [140] jointly optimized 
the entities and the linking of entities to 
a KB. Strubell et al. [141] proposed to use 
dilated convolutions, defined over a 
wider effective input width by skipping 
over certain inputs at a time, for better 
parallelization and context modeling. 
The model showed significant speedup 
while retaining accuracy.

D. Semantic Role Labeling
Semantic role labeling (SRL) aims to 
discover the predicate-argument struc-
ture of each predicate in a sentence. For 
each target verb (predicate), all constit-
uents in the sentence which take a 
semantic role of the verb are recognized. 
Typical semantic arguments include 
Agent, Patient, Instrument, etc., and also 
adjuncts such as Locative, Temporal, 
Manner, Cause, etc. [143]. Table 5 shows 
the performance of different models on 
the CoNLL 2005&2012 datasets.

Traditional SRL systems consist of 
several stages: producing a parse tree, 
identifying which parse tree nodes rep-
resent the arguments of a given verb, 
and finally classifying these nodes to 
determine the corresponding SRL tags. 
Each classification process usually entails 
extracting numerous features and feed-
ing them into statistical models [5].

Given a predicate, Täckström et al. 
[142] scored a constituent span and its 
possible role to that predicate with a 
series of features based on the parse tree. 
They proposed a dynamic programming 
algorithm for efficient inference. Collob-
ert et al. [5] achieved comparable results 
with a convolution neural networks aug-
mented by parsing information provided 
in the form of additional look-up tables. 
Zhou and Xu [143] proposed to use 
bidirectional LSTM to model arbitrarily 
long context, which proved to be suc-
cessful without any parsing tree informa-
tion. He et al. [144] further extended this 
work by introducing highway connec-
tions [150], more advanced regulariza-
tion and ensemble of multiple experts.

E. Sentiment Classification
The Stanford Sentiment Treebank (SST) 
dataset contains sentences taken from 
the movie review website Rotten Toma-
toes. It was proposed by Pang and Lee 
[151] and subsequently extended by 
Socher et al. [4]. The annotation scheme 
has inspired a new dataset for sentiment 
analysis, called CMU-MOSI, where 
sentiment is studied in a multimodal 
setup [152].

Socher et al. [4] and Tai et al. [105] 
were both recursive networks that relied 
on constituency parsing trees. Their dif-
ference shows the effectiveness of 
LSTM over vanilla RNN in modeling 
sentences. On the other hand, tree-
LSTM performed better than linear 
bidirectional LSTM, implying that tree 
structures can potentially better capture 
the syntactical property of natural sen-

tences. Yu et al. [146] proposed to refine 
pre-trained word embeddings with a 
sentiment lexicon, observing improved 
results based on [105].

Kim [44] and Kalchbrenner et al. 
[43] both used convolutional layers. The 
model [44] was similar to the one in 
Fig. 5, while Kalchbrenner et al. [43] 
constructed the model in a hierarchical 
manner by interweaving k-max pooling 
layers with convolutional layers.

F. Machine Translation
The phrase-based SMT framework 
[160] factorized the translation model 
into the translation probabilities of 
matching phrases in the source and tar-
get sentences. Cho et al. [75] proposed 
to learn the translation probability of a 
source phrase to a corresponding target 
phrase with an RNN encoder-decoder. 
Such a scheme of scoring phrase pairs 
improved translation performance. 
Sutskever et al. [67], on the other hand, 
re-scored the top 1000 best candidate 
translations produced by an SMT system 
with a 4-layer LSTM seq2seq model. 
Dispensing the traditional SMT system 
entirely, Wu et al. [147] trained a deep 
LSTM network with 8 encoder and  
8 decoder layers with residual connec-
tions as well as attention connections. 
Wu et al. [147] then refined the model 
by using reinforcement learning to 
directly optimize BLEU scores, but they 
found that the improvement in BLEU 
scores by this method did not reflect in 
human evaluation of translation quality. 
Recently, Gehring et al. [148] pro-
posed a CNN-based seq2seq learning 
model for machine translation. The rep-
resentation for each word in the input is 
computed by CNN in a parallelized 
style for the attention mechanism. The 
decoder state is also determined by 
CNN with words that are already pro-
duced. Vaswani et al. [149] proposed a 
self-attention-based model and dispensed 
convolutions and recurrences entirely.

Recently, there has been a surge of interest in coupling 
neural networks with a form of memory, which the model 
can interact with.
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G. Question Answering
QA problems take many forms. Some 
rely on large KBs to answer open-
domain questions, while others answer a 
question based on a few sentences or a 
paragraph (reading comprehension). For 
the former, we list (see Table 8) several 
experiments conducted on a large-scale 
QA dataset introduced by [153], where 
14 M commonsense knowledge triples 
are considered as the KB. Each question 
can be answered with a single-relation 
query. For the latter, we consider (see 
Table 8) the synthetic dataset of bAbI, 
which requires the model to reason over 
multiple related facts to produce the right 
answer. It contains 20 synthetic tasks that 
test a model’s ability to retrieve relevant 
facts and reason over them. Each task 
focuses on a different skill such as basic 
coreference and size reasoning.

The central problem of learning to 
answer single-relation queries is to find 

the single supporting fact in the data-
base. Fader et al. [153] proposed to 
tackle this problem by learning a lexicon 
that maps natural language patterns to 
database concepts (entities, relations and 
question patterns) based on a question 
paraphrasing dataset. Bordes et al. [154] 
embedded both questions and KB tri-
ples as dense vectors and scored them 
with inner product.

Weston et al. [135] took a similar 
approach by treating the KB as long-
term memory, while casting the prob-
lem in the framework of a memory net-
work. On the bAbI dataset, Sukhbaatar 
et al. [136] improved upon the original 
memory networks model [135] by mak-
ing the training procedure agnostic of 
the actual supporting fact, while Kumar 
et al. [128] used neural sequence mod-
els (GRU) instead of neural bag-of-
words models as in [136] and [135] to 
embed memories.

H. Dialogue Systems
Two types of dialogue systems have 
been developed: generation-based mod-
els and retrieval-based models.

In Table 9, the Twitter Conversation 
Triple Dataset is typically used for eval-
uating generation-based dialogue 
systems, containing 3-turn Twitter con-
versation instances. One commonly 
used evaluation metric is BLEU [161], 
although it is commonly acknowledged 
that most automatic evaluation metrics 
are not completely reliable for dialogue 
evaluation and additional human evalu-
ation is often necessary. Ritter et al. 
[155] employed the phrase-based statis-
tical machine translation (SMT) frame-
work to “translate” the message to its 
appropr iate response. Sordoni et al. 
[156] reranked the 1000 best responses 
produced by SMT with a context-sen-
sitive RNN encoder-decoder frame-
work, observing substantial gains. Li 
et al. [157] reported results on replacing 
the traditional maximum log likelihood 
training objective with the maximum 
mutual information training objective, 
in an effort to produce interesting and 
diverse responses, both of which are 
tested on a 4-layer LSTM encoder-
decoder framework.

TABLE 8 Question answering.

Paper Model bAbI (Mean accuracy %) Farbes (Accuracy %)

Fader et al. [153] Paraphrase-driven lexicon learning 0.54 

Bordes et al. [154] Weekly supervised embedding 0.73 

Weston et al. [135] Memory networks 93.3 0.83 

Sukhbaatar et al. [136] End-to-end memory networks 88.4 

Kumar et al. [128] DMN 93.6 

TABLE 9 Dialogue systems.

Paper Model 
Twitter Conversation 
Triple Dataset (BLEU)

Ubuntu Dialogue Dataset 
(recall 1@10%)

Ritter et al. [155] SMT 3.60 

Sordoni et al. [156] SMT+neural reranking 4.44 

Li et al. [157] LSTM seq2seq 4.51 

Li et al. [157] LSTM seq2seq with MMI objective 5.22 

Lowe et al. [89] Dual LSTM encoders for semantic matching 55.22 

Dodge et al. [158] Memory networks 63.72 

Zhou et al. [159] Sentence-level CNN-LSTM encoder 66.15 

We expect to see more deep learning models whose 
internal memory (bottom-up knowledge learned from  
the data) is enriched with an external memory  
(top-down knowledge inherited from a knowledge base).
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The response retrieval task is defined 
as selecting the best response from a re-
pository of candidate responses. Such a 
model can be evaluated by the recall1@k 
metric, where the ground-truth re-
sponse is mixed with k 1-  random re-
sponses. The Ubuntu dialogue dataset 
was constructed by scraping multi-turn 
Ubuntu trouble-shooting dialogues 
from an online chatroom [89]. Lowe et 
al. [89] used LSTMs to encode the mes-
sage and response, and then inner prod-
uct of the two sentence embeddings is 
used to rank candidates.

Zhou et al. [159] proposed to better 
exploit the multi-turn nature of human 
conversation by employing the LSTM 
encoder on top of sentence-level CNN 
embeddings, similar to [162]. Dodge et 
al. [158] cast the problem in the frame-
work of a memory network, where the 
past conversation was treated as memory 
and the latest utterance was considered 
as a “question” to be responded to. The 
authors showed that using simple neural 
bag-of-word embedding for sentences 
can yield competitive results.

IX. Conclusion
Deep learning offers a way to harness 
large amount of computation and data 
with little engineering by hand [163]. 
With distributed representation, various 
deep models have become the new 
state-of-the-art methods for NLP prob-
lems. Supervised learning is the most 
popular practice in recent deep learning 
research for NLP. In many real-world 
scenarios, however, we have unlabeled 
data which require advanced unsuper-
vised or semi-supervised approaches. In 
cases where there is lack of labeled data 
for some particular classes or the appear-
ance of a new class while testing the 
model, strategies like zero-shot learning 
should be employed. These learning 
schemes are still in their developing 
phase but we expect deep learning 
based NLP research to be driven in the 
direction of making better use of unla-
beled data. We expect such trend to 
continue with more and better model 
designs. We expect to see more NLP 
applications that employ reinforcement 
learning methods, e.g., dialogue systems. 

We also expect to see more research on 
multimodal learning [164] as, in the real 
world, language is often grounded on 
(or correlated with) other signals.

Finally, we expect to see more deep 
learning models whose internal mem-
ory (bottom-up knowledge learned 
from the data) is enr iched with an 
external memory (top-down knowledge 
inherited from a KB). Coupling sym-
bolic and sub-symbolic AI will be key 
for stepping forward in the path from 
NLP to natural language understanding. 
Relying on machine learning, in fact, is 
good to make a ‘good guess’ based on 
past experience, because sub-symbolic 
methods encode correlation and their 
decision-making process is probabilistic. 
Natural language understanding, how-
ever, requires much more than that. To 
use Noam Chomsky’s words, “you do 
not get discoveries in the sciences by 
taking huge amounts of data, throwing 
them into a computer and doing statisti-
cal analysis of them: that’s not the way 
you understand things, you have to have 
theoretical insights”.
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