
1556-603x/18©2018ieee	 august 2018 | IEEE Computational intelligence magazine 55

 Article
Review

Digital Object Identifier 10.1109/MCI.2018.2840738
Date of publication: 18 July 2018

Abstract

Deep learning methods employ
multiple processing layers to learn
hierarchical representations of

data, and have produced state-of-the-art
results in many domains. Recently, a
variety of model designs and methods
have blossomed in the context of natu-
ral language processing (NLP). In this
paper, we review significant deep
learning related models and
methods that have been
employed for numerous
NLP tasks and provide a
walk-through of their
evolution. We also sum-
mar ize, compare and
contrast the various models
and put forward a detailed
understanding of the past, present
and future of deep learning in NLP.

I. Introduction
Natural language processing (NLP) is a
theory-motivated range of computa-
tional techniques for the automatic
analysis and representation of human
language. NLP research has evolved
from the era of punch cards and batch

processing, in which the analysis of a
sentence could take up to 7 minutes, to
the era of Google and the likes of it, in
which millions of webpages can be

processed in less than a second [1]. NLP
enables computers to perform a wide
range of natural language related tasks at
all levels, ranging from parsing and part-
of-speech (POS) tagging, to machine
translation and dialogue systems.

Deep learning architectures and al
gorithms have already made impressive
advances in fields such as computer vision
and pattern recognition. Following this
trend, recent NLP research is now in

creasingly focusing on the use of new deep
learning methods (see Fig. 1). For decades,
machine learning approaches targeting
NLP problems have been based on shal-
low models (e.g., SVM and logistic regres-
sion) trained on very high dimensional and
sparse features. In the last few years, neural
networks based on dense vector represen-
tations have been producing superior

results on various NLP tasks. This
trend is sparked by the success

of word embeddings [2], [3]
and deep learning meth-
ods [4]. Deep learning
enables multi-level auto-
matic feature representa-

tion learning. In contrast,
traditional machine learning

based NLP systems liaise heavily
on hand-crafted features. Such hand-

crafted features are time-consuming and
often incomplete.

Collobert et al. [5] demonstrated that
a simple deep learning framework
outperforms most state-of-the-art ap
proaches in several NLP tasks such as
named-entity recognition (NER), se
mantic role labeling (SRL), and POS
tagging. Since then, numerous complex
deep learning based algorithms have
been proposed to solve difficult NLP

Tom Young
School of Information and Electronics, Beijing Institute
of Technology, Beijing, China

Devamanyu Hazarika
School of Computing, National University of Singapore,
Singapore

Soujanya Poria
Temasek Laboratories, Nanyang Technological University,
Singapore

Erik Cambria
School of Computer Science and Engineering,
Nanyang Technological University, Singapore

Recent Trends in Deep Learning Based Natural Language Processing

Corresponding Author: Erik Cambria (cambria@ntu.edu.sg)

Image licensed by Ingram Publishing

56 IEEE Computational intelligence magazine | august 2018

tasks. We review major deep learning
related models and methods applied to
natural language tasks such as convolu-
tional neural networks (CNNs), recur-
rent neural networks (RNNs), and
recursive neural networks. We also dis-
cuss memory-augmenting strategies,
attention mechanisms and how unsu-
pervised models, reinforcement learning
methods and recently, deep generative
models have been employed for lan-
guage-related tasks.

To the best of our knowledge, this
work is the first of its type to compre-
hensively cover the most popular deep
learning methods in NLP research
today. The work by Goldberg [6] only
presented the basic principles for apply-
ing neural networks to NLP in a tuto-
rial manner. We believe this paper will
give readers a more comprehensive idea
of current practices in this domain. The
structure of the paper is as follows: Sec-
tion II introduces the concept of dis-
tributed representation, the basis of
sophisticated deep learning models;
next, Sections III, IV, and V discuss
popular models such as convolutional,
recurrent, and recursive neural net-
works, as well as their use in various
NLP tasks; following, Section VI lists
recent applications of reinforcement
learning in NLP and new developments
in unsupervised sentence representation
learning; later, Section VII illustrates the
recent trend of coupling deep learning
models with memory modules; finally,
Section VIII summarizes the perfor-
mance of a series of deep learning meth-

ods on standard datasets about major
NLP topics.

II. Distributed Representation
Statistical NLP has emerged as the pri-
mary option for modeling complex nat-
ural language tasks. However, in its
beginning, it often used to suffer from
the notor ious curse of dimensionality
while learning joint probability func-
tions of language models. This led to the
motivation of learning distributed repre-
sentations of words existing in low-
dimensional space [7].

A. Word Embeddings
Distributional vectors or word embed-
dings (Fig. 2) essentially follow the dis-
tributional hypothesis, according to
which words with similar meanings tend
to occur in similar context. Thus, these
vectors try to capture the characteristics
of the neighbors of a word. The main
advantage of distributional vectors is that
they capture similarity between words.
Measuring similarity between vectors is
possible, using measures such as cosine
similarity. Word embeddings are often
used as the first data processing layer in a
deep learning model. Typically, word
embeddings are pre-trained by optimiz-
ing an auxiliary objective in a large
unlabeled corpus, such as predicting a
word based on its context [3], [8], where
the learned word vectors can capture
general syntactical and semantic infor-
mation. Thus, these embeddings have
proven to be efficient in capturing con-
text similarity, analogies and due to its

smaller dimensionality, are fast and effi-
cient in computing core NLP tasks.

Over the years, the models that cre-
ate such embeddings have been shallow
neural networks and there has not been
need for deep networks to create good
embeddings. However, deep learning
based NLP models invariably represent
their words, phrases and even sentences
using these embeddings. This is in fact a
major difference between traditional
word count based models and deep
learning based models. Word embed-
dings have been responsible for state-of-
the-art results in a wide range of NLP
tasks [9]–[12]. For example, Glorot et al.
[13] used embeddings along with
stacked denoising autoencoders for
domain adaptation in sentiment classifi-
cation and Hermann and Blunsom [14]
presented combinatory categorial auto-
encoders to learn the compositionality
of sentence. Their wide usage across the
recent literature shows their effectiveness
and importance in any deep learning
model performing a NLP task.

Distributed representations (embed-
dings) are mainly learned through con-
text. During 1990s, several research
developments [15] marked the founda-
tions of research in distributional seman-
tics. A more detailed summary of these
early trends is provided in [16], [17].
Later developments were adaptations of
these early works, which led to creation
of topic models like latent Dirichlet
allocation [18] and language models [7].
These works laid out the foundations of
representation learning.

70

60

50(%
)

40

30

2012 2013 2014 2015
Year

2016 2017

ACL
EMNLP

EACL
NAACL

Figure 1 Percentage of deep learning papers in ACL, EMNLP, EACL,
NAACL over the last 6 years (long papers).

King

(–) Man

(+) Woman

Queen

Figure 2 Distributional vectors exhibits compositionality.

august 2018 | IEEE Computational intelligence magazine 57

In 2003, Bengio et al. [7] proposed a
neural language model which learned dis-
tributed representations for words (Fig. 3).
Authors argued that these word represen-
tations, once compiled into sentence rep-
resentations using joint probability of word
sequences, achieved an exponential num-
ber of semantically neighboring sentences.
This, in turn, helped in generalization
since unseen sentences could now gather
higher confidence if word sequences with
similar words (in respect to nearby word
representation) were already seen.

Collobert and Weston [19] was the
first work to show the utility of pre-
trained word embeddings. The authors
proposed a neural network architecture
that forms the foundation to many cur-
rent approaches. The work also estab-
lishes word embeddings as a useful tool
for NLP tasks. However, the immense
popularization of word embeddings was
arguably due to [3], who proposed the
continuous bag-of-words (CBOW) and
skip-gram models to efficiently con-
struct high-quality distributed vector
representations. Propelling their popu-
larity was the unexpected side effect of
the vectors exhibiting compositionality,
i.e., adding two word vectors results in a
vector that is a semantic composite of
the individual words, e.g., ‘man’ + ‘royal’
= ‘king’. The theoretical justification for
this behavior was recently given by Git-
tens et al. [20], which stated that com-
positionality is seen only when certain
assumptions are held, e.g., the assump-
tion that words need to be uniformly
distributed in the embedding space.

Pennington et al. [21] is another
famous word embedding method which
is essentially a “count-based” model. Here,
the word co-occurrence count matrix is
preprocessed by normalizing the counts
and log-smoothing them. This matrix is
then factorized to get lower dimensional
representations which is done by minimiz-
ing a “reconstruction loss”.

Below, we provide a brief description
of the word2vec method proposed by
Mikolov et al. [3].

B. Word2vec
Word embeddings were revolutionized
by Mikolov et al. [3], [8] who proposed

the CBOW and skip-gram models.
CBOW computes the conditional proba-
bility of a target word given the context
words surrounding it across a window of
size .k On the other hand, the skip-gram
model does the exact opposite of the
CBOW model, by predicting the sur-
rounding context words given the central
target word. The context words are
assumed to be located symmetrically to
the target words within a distance equal to
the window size in both directions. In
unsupervised settings, the word embed-
ding dimension is determined by the
accuracy of prediction. As the embedding
dimension increases, the accuracy of pre-
diction also increases until it converges at
some point, which is considered the optimal
embedding dimension as it is the shortest
without compromising accuracy.

Let us consider a simplified version
of the CBOW model where only one
word is considered in the context.
This essentially replicates a bigram lan
guage model.

The CBOW model is a simple fully
connected neural network with one
hidden layer. The input layer, which
takes the one-hot vector of context
word has V neurons while the hidden
layer has N neurons. The output layer is
softmax of all words in the vocabulary.
The layers are connected by weight
matrix W RV N! # and ,W RH V! #l

respectively. Each word from the vocab-
ulary is finally represented as two
learned vectors vc and ,vw correspond-
ing to context and target word represen-
tations, respectively. Thus, kth word in
the vocabulary will have

	 .v W v Wand) ()c (k,. w .,k= = l � (1)

Overall, for any word wi with given
context word c as input,

	 P
c
w y

e

ei
i

u

i

V

u

1

i

i

= =

=

` j
/

� (2)

where, . .u v vi w
T

ci=

The parameters { , }V Vw ci = are
learned by defining the objective func-
tion as the log-likelihood and finding its
gradient as

	 ()l log P
c
w

w Vocabulary

i =
!

` ` jj/ � (3)

	
(

.
)

V
l

V 1 P
c
w

w
c2

2 i
= -` ` jj � (4)

In the general CBOW model, all the
one-hot vectors of context words are
taken as input simultaneously, i.e,

	 ().h W x x xT
1 2 cg= + + + � (5)

One limitation of individual word
embeddings is their inability to represent
phrases, where the combination of two
or more words (e.g., idioms like “hot

Table Look-Up
Using Matrix C

Word Index wt – n +1 Word Index wt – 1

Tanh Activation

Concatenation

.

.

.

i th Output = P (wt = i | Context)

Softmax
Classification

C (wt – n +1) C (wt – 1)

Figure 3 Representation of the Neural Language Model proposed by Bengio et al. [7]. C(i) is
the ith word embedding.

58 IEEE Computational intelligence magazine | august 2018

potato” or named entities such as “Bos-
ton Globe”) does not represent the
combination of meanings of individual
words. One solution to this problem, as
explored by Mikolov et al. [3], is to
identify such phrases based on word
co-occurrence and train embeddings for
them separately. More recent methods
have explored directly learning n-gram
embeddings from unlabeled data [22].

Another limitation comes from
learning embeddings based only on a
small window of surrounding words,
sometimes words such as good and bad
share almost the same embedding [23],
which is problematic if used in tasks
such as sentiment analysis [24]. At times
these embeddings cluster semantically-
similar words which have opposing sen-
timent polarities. This leads the down-
stream model used for the sentiment
analysis task to be unable to identify this
contrasting polarities leading to poor
performance. Tang et al. [25] addresses
this problem by proposing sentiment
specific word embedding (SSWE).
Authors incorporate the supervised sen-
timent polarity of text in their loss func-
tions while learning the embeddings.

A general caveat for word embeddings
is that they are highly dependent on the
applications in which it is used. Labutov
and Lipson [26] proposed task specific
embeddings which retrain the word
embeddings to align them in the current
task space. This is very important as train-
ing embeddings from scratch requires large
amount of time and resource. Mikolov et
al. [8] tried to address this issue by propos-
ing negative sampling which is frequency-
based sampling of negative terms while
training the word2vec model.

Traditional word embedding algo-
rithms assign a distinct vector to each

word. This makes them unable to
account for polysemy. In a recent work,
Upadhyay et al. [27] provided an inno-
vative way to address this deficit. The
authors leveraged multilingual parallel
data to learn multi-sense word embed-
dings. For example, the English word
bank, when translated to French provides
two different words: banc and banque
representing financial and geographical
meanings, respectively. Such multilingual
distributional information helped them
in accounting for polysemy.

Table 1 provides a directory of existing
frameworks that are frequently used for
creating embeddings which are further
incorporated into deep learning models.

C. Character Embeddings
Word embeddings are able to capture
syntactic and semantic information, yet
for tasks such as POS-tagging and NER,
intra-word morphological and shape
information can also be very useful. Gen-
erally speaking, building natural language
understanding systems at the character
level has attracted certain research atten-
tion [28]–[31]. Better results on morpho-
logically rich languages are reported in
certain NLP tasks. Santos and Guimaraes
[30] applied character-level representa-
tions, along with word embeddings for
NER, achieving state-of-the-art results in
Portuguese and Spanish corpora. Kim et
al. [28] showed positive results on build-
ing a neural language model using only
character embeddings. Ma et al. [32]
exploited several embeddings, including
character trigrams, to incorporate proto-
typical and hierarchical information for
learning pre-trained label embeddings in
the context of NER.

A common phenomenon for lan-
guages with large vocabularies is the

unknown word issue or out-of-vocabu-
lary word (OOV) issue. Character
embeddings naturally deal with it since
each word is considered as no more than
a composition of individual letters. In
languages where text is not composed of
separated words but individual characters
and the semantic meaning of words map
to its compositional characters (such as
Chinese), building systems at the charac-
ter level is a natural choice to avoid word
segmentation [33]. Thus, works employ-
ing deep learning applications on such
languages tend to prefer character
embeddings over word vectors [34]. For
example, Peng et al. [35] proved that rad-
ical-level processing could greatly
improve sentiment classification perfor-
mance. In particular, the authors pro-
posed two types of Chinese radical-based
hierarchical embeddings, which incorpo-
rate not only semantics at radical and
character level, but also sentiment infor-
mation. Bojanowski et al. [36] also tried
to improve the representation of words
by using character-level information in
morphologically-rich languages. They
approached the skip-gram method by
representing words as bag-of-characters
n-grams. Their work thus had the effec-
tiveness of the skip-gram model along
with addressing some persistent issues of
word embeddings. The method was also
fast, which allowed training models on
large corpora quickly. Popularly known
as FastText, such a method stands out
over previous methods in terms of speed,
scalability, and effectiveness.

Apart from character embeddings,
other approaches have been proposed for
OOV handling. Herbelot and Baroni [37]
provided OOV handling on-the-fly by
initializing the unknown words as the
sum of the context words and refining
these words with a high learning rate.
However, their approach is yet to be
tested on typical NLP tasks. Pinter et al.
[38] provided an interesting approach of
training a character-based model to recre-
ate pre-trained embeddings. This allowed
them to learn a compositional mapping
from character to word embedding, thus
tackling the OOV problem.

Despite the ever growing popularity
of distributional vectors, recent discussions

TABLE 1 Frameworks providing embedding tools and methods.

Framework Language URL

S-Space Java https://github.com/fozziethebeat/S-Space

Semanticvectors Java https://github.com/semanticvectors/

Gensim Python https://radimrehurek.com/gensim/

Pydsm Python https://github.com/jimmycallin/pydsm

Dissect Python http://clic.cimec.unitn.it/composes/toolkit/

FastText Python https://fasttext.cc/

august 2018 | IEEE Computational intelligence magazine 59

on their relevance in the long run have
cropped up. For example, Lucy and
Gauthier [39] has recently tried to evalu-
ate how well the word vectors capture
the necessary facets of conceptual mean-
ing. The authors have discovered severe
limitations in perceptual understanding
of the concepts behind the words, which
cannot be inferred from distributional
semantics alone. A possible direction for
mitigating these deficiencies will be
grounded learning, which has been gain-
ing popularity in this research domain.

III. Convolutional Neural Networks
Following the popularization of word
embeddings and its ability to represent
words in a distributed space, the need
arose for an effective feature function
that extracts higher-level features from
constituting words or n-grams. These
abstract features would then be used for
numerous NLP tasks such as sentiment
analysis, summarization, machine trans-
lation, and question answering (QA).
CNNs turned out to be the natural
choice given their effectiveness in com-
puter vision tasks [40]–[42].

The use of CNNs for sentence model-
ing traces back to Collobert and Weston
[19]. This work used multi-task learning to
output multiple predictions for NLP tasks
such as POS tags, chunks, named-entity
tags, semantic roles, semantically-similar
words and a language model. A look-up
table was used to transform each word
into a vector of user-defined dimensions.
Thus, an input sequence { , , ..., }s s sn1 2 of
n words was transformed into a series of
vectors { , , ..., }w w ws s s2 n1 by applying the
look-up table to each of its words (Fig. 4).

This can be thought of as a primitive
word embedding method whose weights
were learned in the training of the net-
work. In [5], Collobert extended his
work to propose a general CNN-based
framework to solve a plethora of NLP
tasks. Both these works triggered a huge
popularization of CNNs amongst NLP
researchers. Given that CNNs had
already shown their mettle for computer
vision tasks, it was easier for people to
believe in their performance.

CNNs have the ability to extract
salient n-gram features from the input

sentence to create an informative latent
semantic representation of the sentence
for downstream tasks. This application
was pioneered by Collobert et al. [5],
Kalchbrenner et al. [43], Kim [44],
which led to a huge proliferation of
CNN-based networks in the succeeding
literature. Below, we describe the work-
ing of a simple CNN-based sentence
modeling network:

A. Basic CNN

1) Sentence Modeling
For each sentence, let w Ri

d! repre-
sent the word embedding for the thi
word in the sentence, where d is the
dimension of the word embedding.
Given that a sentence has n words, the
sentence can now be represented as an
embedding matrix .W R n d! # Fig. 5
depicts such a sentence as an input to
the CNN framework.

Let wi:i j+ refer to the concatenation
of vectors , , ..., .w w wi i j1+ Convolution
is performed on this input embedding
layer. It involves a filter k Rhd! which is
applied to a window of h words to pro-
duce a new feature. For example, a fea-
ture ci is generated using the window of
words wi:i h 1+ - by

	 (.)w kc f bi:i h 1i
T= ++ - � (6)

where b R! is the bias term and f is a
non-linear activation function, for exam-
ple the hyperbolic tangent. The filter k is
applied to all possible windows using the
same weights to create the feature map.

	 [, , ...,] .c c c cn h1 2 1= - + � (7)

In a CNN, a number of convolu-
tional filters, also called kernels (typically
hundreds), of different widths slide over
the entire word embedding matrix.
Each kernel extracts a specific pattern of
n-gram. A convolution layer is usually

wo w1 wN –1

Input
Sentence

Lookup Table

Feature 1

Feature k

Convolution
Layer

Max-Pool
over Time

Fully Connected Layer

Softmax Classification

Figure 4 CNN framework used to perform word-wise class prediction proposed by Collobert
and Weston [19].

60 IEEE Computational intelligence magazine | august 2018

followed by a max-pooling strategy,
{ },maxc c=t which subsamples the

input typically by applying a max opera-
tion on each filter. This strategy has two
primary reasons.

Firstly, max pooling provides a fixed-
length output which is generally required
for classification. Thus, regardless the size
of the filters, max pooling always maps the
input to a fixed dimension of outputs.
Secondly, it reduces the output’s dimen-
sionality while keeping the most salient
n-gram features across the whole sen-
tence. This is done in a translation invari-
ant manner where each filter is now able
to extract a particular feature (e.g., nega-
tions) from anywhere in the sentence and
add it to the final sentence representation.

The word embeddings can be initial-
ized randomly or pre-trained on a large
unlabeled corpora (as in Section II). The
latter option is sometimes found benefi-
cial to performance, especially when the
amount of labeled data is limited [44].
This combination of convolution layer
followed by max pooling is often stacked
to create deep CNN networks. These
sequential convolutions help in improved
mining of the sentence to grasp a truly
abstract representation comprising rich
semantic information. The kernels through
deeper convolutions cover a larger part of
the sentence until finally covering it fully
and creating a global summarization of
the sentence features.

2) Window Approach
The above-mentioned architecture allows
for modeling of complete sentences into
sentence representations. However, many

NLP tasks, such as NER, POS tagging,
and SRL, require word-based predictions.
To adapt CNNs for such tasks, a window
approach is used, which assumes that the
tag of a word primarily depends on its
neighboring words. For each word, thus, a
fixed-size window surrounding itself is
assumed and the sub-sentence ranging
within the window is considered. A
standalone CNN is applied to this sub-
sentence as explained earlier and predic-
tions are attributed to the word in the
center of the window. Following this
approach, Poria et al. [45] employed a
multi-level deep CNN to tag each word
in a sentence as a possible aspect or non-
aspect. Coupled with a set of linguistic
patterns, their ensemble classifier managed
to perform well in aspect detection.

The ultimate goal of word-level clas-
sification is generally to assign a sequence
of labels to the entire sentence. In such
cases, structured prediction techniques
such as conditional random field (CRF)
are sometimes employed to better cap-
ture dependencies between adjacent class
labels and finally generate cohesive label
sequence giving maximum score to the
whole sentence [46].

To get a larger contextual range, the
classic window approach is often coupled
with a time-delay neural network
(TDNN) [47]. Here, convolutions are
performed across all windows throughout
the sequence. These convolutions are
generally constrained by defining a kernel
having a certain width. Thus, while the
classic window approach only considers
the words in the window around the
word to be labeled, TDNN considers all

windows of words in the sentence at the
same time. At times, TDNN layers are
also stacked like CNN architectures to
extract local features in lower layers and
global features in higher layers [5].

B. Applications
In this section, we present some of the
crucial works that employed CNNs on
NLP tasks to set state-of-the-art bench-
marks in their respective times.

Kim [44] explored using the above
architecture for a variety of sentence
classification tasks, including sentiment,
subjectivity and question type classifica-
tion, showing competitive results. This
work was quickly adapted by researchers
given its simple yet effective network.
After training for a specific task, the ran-
domly initialized convolutional kernels
became specific n-gram feature detec-
tors that were useful for that target task.
This simple network, however, had
many shortcomings with the CNN’s
inability to model long distance depen-
dencies standing as the main issue.

This issue was partly handled by Kal-
chbrenner et al. [43], who published a
prominent paper where they proposed a
dynamic convolutional neural network
(DCNN) for semantic modeling of sen-
tences. They proposed dynamic k-max
pooling strategy which, given a sequence
p selects the k most active features. The
selection preserved the order of the fea-
tures but was insensitive to their specific
positions (Fig. 6). Built on the concept of
TDNN, they added this dynamic k-max
pooling strategy to create a sentence
model. This combination allowed filters
with small width to span across a long
range within the input sentence, thus
accumulating crucial information across
the sentence. In the induced subgraph
(Fig. 6), higher order features had highly
variable ranges that could be either short
and focused or global and long as the
input sentence. They applied their model
on multiple tasks, including sentiment
prediction and question type classifica-
tion, achieving significant results. Overall,
this work commented on the range of
individual kernels while trying to model
contextual semantics and proposed a way
to extend their reach.

Input Embedding
Sequence of

Sentence

Convolution with
Multiple Filter

Widths and Multiple
Feature Maps

Max-Pooling
Over Time

Dense Layer

I

Textual Processing

Love
This

Movie
Very

Much

Softmax

Figure 5 CNN modeling on text.

august 2018 | IEEE Computational intelligence magazine 61

Tasks involving sentiment analysis also
require effective extraction of aspects
along with their sentiment polarities [48].
Ruder et al. [49] applied a CNN where
in the input they concatenated an aspect
vector with the word embeddings to get
competitive results. CNN modeling
approach varies amongst different length
of texts. Such differences were seen in
many works like Johnson and Zhang
[22], where performance on longer text
worked well as opposed to shorter texts.
Wang et al. [50] proposed the usage of
CNN for modeling representations of
short texts, which suffer from the lack of
available context and, thus, require extra
efforts to create meaningful representa-
tions. The authors proposed semantic
clustering which introduced multi-scale
semantic units to be used as external
knowledge for the short texts. CNN was
used to combine these units and form
the overall representation. In fact, this
requirement of high context information
can be thought of as a caveat for CNN-
based models. NLP tasks involving
microtexts using CNN-based methods
often require the need of additional
information and external knowledge to
perform as per expectations. This fact was
also observed in [51], where authors per-
formed sarcasm detection in Twitter texts
using a CNN network. Auxiliary support,
in the form of pre-trained networks
trained on emotion, sentiment and per-
sonality datasets was used to achieve
state-of-the-art performance.

CNNs have also been extensively
used in other tasks. For example, Denil
et al. [52] applied DCNN to map mean-
ings of words that constitute a sentence
to that of documents for summarization.
The DCNN learned convolution filters
at both the sentence and document
level, hierarchically learning to capture
and compose low-level lexical features
into high-level semantic concepts. The
focal point of this work was the intro-
duction of a novel visualization tech-
nique of the learned representations,
which provided insights not only in the
learning process but also for automatic
summarization of texts.

CNN models are also suitable for cer-
tain NLP tasks that require semantic

matching [53]. A similar model to the
above CNN architecture (Fig. 5) was
explored in [54] for information retrieval.
The CNN was used for projecting que-
ries and documents to a fixed-dimension
semantic space, where cosine similarity
between the query and documents was
used for ranking documents regarding a
specific query. The model attempted to
extract rich contextual structures in a
query or a document by considering a
temporal context window in a word
sequence. This captured the contextual
features at the word n-gram level. The
salient word n-grams is then discovered
by the convolution and max-pooling lay-
ers which are then aggregated to form
the overall sentence vector.

In the domain of QA, Yih et al.
[55] proposed to measure the semantic
similarity between a question and en-
tries in a knowledge base (KB) to
determine what supporting fact in the
KB to look for when answering a
question. To create semantic repre-
sentations, a CNN similar to the one
in Fig. 5 was used. Unlike the classifica-
tion setting, the supervision signal came
from positive or negative text pairs (e.g.,
query-document), instead of class
labels. Subsequently, Dong et al. [56]
introduced a mult i-column CNN
(MCCNN) to analyze and under-
stand questions from multiple aspects
and create their representations.
MCCNN used multiple column net-
works to extract information from as-
pects comprising answer types and

context from the input questions. By
representing entities and relations in the
KB with low-dimensional vectors, they
used question-answer pairs to train the
CNN model so as to rank candidate
answers. Severyn and Moschitti [57]
also used CNN network to model opti-
mal representations of question and
answer sentences. They proposed
additional features in the embeddings in
the form of relational information giv-
en by matching words between the
question and answer pair. These param-
eters were tuned by the network. This
s imple network was able to pro-
duce comparable results to state-of-
the-art methods.

CNNs are wired in a way to capture
the most important information in a sen-
tence. Traditional max-pooling strategies
perform this in a translation invariant
form. However, this often misses valuable
information present in multiple facts
within the sentence. To overcome this
loss of information for multiple-event
modeling, Chen et al. [58] proposed a
modified pooling strategy: dynamic
multi-pooling CNN (DMCNN). This
strategy used a novel dynamic multi-
pooling layer that, as the name suggests,
incorporates event triggers and argu-
ments to reserve more crucial informa-
tion from the pooling layer.

CNNs inherently provide certain
required features like local connectivity,
weight sharing, and pooling. This puts
forward some degree of invariance
which is highly desired in many tasks.

x1 x2 xn
. x1 x2 xn

.

Figure 6 Representation of a DCNN subgraph. With dynamic pooling, a filter with small width
at the higher layers can relate phrases far apart in the input sentence. DCNN was proposed by
Kalchbrenner et al. [43].

62 IEEE Computational intelligence magazine | august 2018

Speech recognition also requires such
invariance and, thus, Abdel-Hamid et al.
[59] used a hybrid CNN-HMM model
which provided invariance to frequency
shifts along the frequency axis. This vari-
ability is often found in speech signals
due to speaker differences. They also
performed limited weight shar ing
which led to a smaller number of pool-
ing parameters, resulting in lower com-
putational complexity. Palaz et al. [60]
performed extensive analysis of CNN-
based speech recognition systems when
given raw speech as input. They showed
the ability of CNNs to directly model
the relationship between raw input and
phones, creating a robust automatic
speech recognition system.

Tasks like machine translation re
quire perseverance of sequential infor-
mation and long-term dependency.
Thus, structurally they are not well suit-
ed for CNN networks, which lack these
features. Nevertheless, Tu et al. [61] ad-
dressed this task by considering both the
semantic similarity of the translation
pair and their respective contexts. Al-
though this method did not address the
sequence perseverance problem, it al-
lowed them to get competitive results
amongst other benchmarks.

Overall, CNNs are extremely effec-
tive in mining semantic clues in contex-
tual windows. However, they are very
data heavy models. They include a large
number of trainable parameters which
require huge training data. This poses a
problem when scarcity of data arises.
Another persistent issue with CNNs is
their inability to model long-distance
contextual information and preserving
sequential order in their representations
[43], [61]. Although CNNs prove an
effective way to capture n-gram features,
which is approximately sufficient in cer-
tain sentence classification tasks, their
sensitivity to word order is restricted
locally and long-term dependencies are
typically ignored.

IV. Recurrent Neural Networks
RNNs [62] use the idea of processing
sequential information. The term “recur-
rent” applies as they perform the same
computation over each token of the

sequence and each step is dependent
on the previous computations and results.
Generally, a fixed-size vector is pro-
duced to represent a sequence by feeding
tokens one by one to a recurrent unit. In
a way, RNNs have “memory” over pre-
vious computations and use this infor-
mation in current processing. This template
is naturally suited for many NLP tasks
such as language modeling [2], [63],
[64], machine translation [65]–[67], speech
recognition [68]–[71], image caption-
ing [72]. This made RNNs increas-
ingly popular for NLP applications in
recent years.

A. Need for Recurrent Networks
In this section, we analyze the funda-
mental properties that favored the popu-
larization of RNNs in a multitude of
NLP tasks. Given that an RNN per-
forms sequential processing by modeling
units in sequence, it has the ability to
capture the inherent sequential nature
present in language, where units are
characters, words or even sentences.
Words in a language develop their
semantical meaning based on the previ-
ous words in the sentence. A simple
example stating this would be the differ-
ence in meaning between “dog” and
“hot dog”. RNNs are tailor-made for
modeling such context dependencies in
language and similar sequence modeling
tasks, which turned to be a strong moti-
vation for researchers to use RNNs over
CNNs in these areas.

Another factor aiding RNN’s suit-
ability for sequence modeling tasks lies
in its ability to model variable length of
text, including very long sentences,
paragraphs and even documents [73].
Unlike CNNs, RNNs have flexible
computational steps that provide better
modeling capability and create the pos-
sibility to capture unbounded context.
This ability became one of the selling
points of major works using RNNs [74].

Many NLP tasks require semantic
modeling over the whole sentence. This
involves creating a gist of the sentence
in a fixed dimensional hyperspace.
RNN’s ability to summarize sentences
led to their increased usage for tasks like
machine translation [75] where the

whole sentence is summarized to a fixed
vector and then mapped back to the
variable-length target sequence.

RNN also provides the network sup-
port to perform time distributed joint
processing. Most of the sequence label-
ing tasks like POS tagging [31] come
under this domain. More specific use
cases include applications such as multi-
label text categorization [76], multi-
modal sentiment analysis [77]–[79], and
subjectivity detection [80].

The above points enlist some of the
focal reasons that motivated researchers
to opt for RNNs. However, it would be
gravely wrong to make conclusions on
the superiority of RNNs over other
deep networks. Recently, several works
provided contrasting evidence on the
superiority of CNNs over RNNs. Even
in RNN-suited tasks like language
modeling, CNNs achieved competitive
performance over RNNs [81]. Both
CNNs and RNNs have different objec-
tives when modeling a sentence. While
RNNs try to create a composition of an
arbitrarily long sentence along with
unbounded context, CNNs try to
extract the most important n-grams.

Yin et al. [82] provided interesting
insights on the comparative performance
between RNNs and CNNs. After testing
on multiple NLP tasks that included sen-
timent classification, QA, and POS tag-
ging, they concluded that there is no
clear winner: the performance of each
network depends on the global seman-
tics required by the task itself.

Below, we discuss some of the RNN
models extensively used in the literature.

B. RNN Models

1) Simple RNN
In the context of NLP, RNNs are pri-
marily based on Elman network [62]
and they are originally three-layer net-
works. Fig. 7 illustrates a more general
RNN which is unfolded across time to
accommodate a whole sequence. In the
figure, xt is taken as the input to the
network at time step t and st repre-
sents the hidden state at the same time
step. Calculation of st is based as per
the equation:

august 2018 | IEEE Computational intelligence magazine 63

	 () .s x sf U Wt t t 1= + - � (8)

Thus, st is calculated based on the
current input and the previous time step’s
hidden state. The function f is taken to
be a non-linear transformation such as

,tanh ReLU and , ,U V W account for
weights that are shared across time. In the
context of NLP, xt typically comprises of
one-hot encodings or embeddings. At
times, they can also be abstract represen-
tations of textual content. tq illustrates
the output of the network which is also
often subjected to non-linearity, espe-
cially when the network contains further
layers downstream.

The hidden state of the RNN is typ-
ically considered to be its most crucial
element. As stated before, it can be con-
sidered as the network’s memory ele-
ment that accumulates information from
other time steps. In practice, however,
these simple RNN networks suffer from
the infamous vanishing gradient problem,
which makes it really hard to learn and
tune the parameters of the earlier layers
in the network.

This limitation was overcome by
various networks such as long short-
term memory (LSTM), gated recur-
rent units (GRUs), and residual net-
works (ResNets), where the first two
are the most used RNN variants in
NLP applications.

2) Long Short-Term Memory
LSTM [83], [84] (Fig. 8) has additional
“forget” gates over the simple RNN,
which allows the error to back-propa-
gate through an unlimited number of
time steps. Consisting of three gates:
input, forget and output gates, it calcu-
lates the hidden state by taking a combi-

nation of these three gates as per the
equations below:

	 x
h
x
t

t

1
=

-; E� (9)

	 (.)xf W bt f fv= + � (10)

	 (.)xi W bt i iv= + � (11)

	 (.)xo W bt o ov= + � (12)

	 (.)tanh xc f c i W bt t t t c c19 9= + +- �
(13)

	 () .tanhh o ct t t9= � (14)

3) Gated Recurrent Units
Another gated RNN variant called GRU
[75] (Fig. 8) of lesser complexity was
invented with empirically similar perfor-
mances to LSTM in most tasks. GRU
comprises of two gates, reset gate and
update gate, and handles the flow of infor-
mation like an LSTM without a memory
unit. Thus, it exposes the whole hidden
content without any control. GRU can be
a more efficient RNN than LSTM. The
working of GRU is as follows:

	 (. .)z x hU Wt t 1z zv= + - � (15)

	 (. .)r x hU Wt t 1r rv= + - � (16)

	 (. . ())tanhs x rU W ht tz s t 19= + - �(17)

	 () .h z s z h1t t t 19 9= - + - � (18)

Researchers often face the dilemma
of choosing the appropriate RNN. This
also extends to developers working in
NLP. Throughout the history, most of
the choices over the RNN variant
tended to be heuristic. Chung et al. [74]
did a critical comparative evaluation of
the three RNN variants mentioned
above, although not on NLP tasks. They
evaluated their work on tasks relating to
polyphonic music modeling and speech
signal modeling. Their evaluation clearly
demonstrated the superiority of the
gated units (LSTM and GRU) over the
traditional simple RNN (in their case,
using tanh activation). However, they
could not make any concrete conclusion
about which of the two gating units was
better. This fact has been noted in other
works too and, thus, people often lever-
age on other factors like computing
power while choosing between the two.

C. Applications

1) RNN for Word-Level Classification
RNNs have had a huge presence in the
field of word-level classification. Many
of their applications stand as state of the
art in their respective tasks. Lample et al.
[85] proposed to use bidirectional
LSTM for NER. The network captured

W

ot −1 ot +1ot

Unfold

V
V V V

W W

U U U

W

U

o

xt −1 xt +1xtx

ht −1 ht +1hth

Figure 7 Simple RNN network.

tanh
xt

C̃

oi

C

(1) Long Short-Term Memory (2) Gated Recurrent Unit

ht –1

f

ht s z

r

xt ht

Figure 8 Illustration of an LSTM and GRU gate.

64 IEEE Computational intelligence magazine | august 2018

arbitrarily long context information
around the target word (curbing the
limitation of a fixed window size) result-
ing in two fixed-size vector, on top of
which another fully-connected layer was
built. They used a CRF layer at last for
the final entity tagging.

RNNs have also shown considerable
improvement in language modeling over
traditional methods based on count statis-
tics. Pioneering work in this field was
done by Graves [86], who introduced the
effectiveness of RNNs in modeling com-
plex sequences with long range context
structures. He also proposed deep RNNs
where multiple layers of hidden states
were used to enhance the modeling. This
work established the usage of RNNs on
tasks beyond the context of NLP. Later,
Sundermeyer et al. [87] compared the gain
obtained by replacing a feed-forward neu-
ral network with an RNN when condi-
tioning the prediction of a word on the
words ahead. In their work, they proposed
a typical hierarchy in neural network
architectures where feed-forward neural
networks gave considerable improvement
over traditional count-based language
models, which in turn were superseded by
RNNs and later by LSTMs. An important
point that they mentioned was the appli-
cability of their conclusions to a variety of
other tasks such as statistical machine
translation [88].

2) RNN for Sentence-Level
Classification
Wang et al. [24] proposed encoding entire
tweets with LSTM, whose hidden state is

used for predicting sentiment polarity.
This simple strategy proved competitive
to the more complex DCNN structure
by Kalchbrenner et al. [43] designed to
endow CNN models with ability to cap-
ture long-term dependencies. In a special
case studying negation phrase, the authors
also showed that the dynamics of LSTM
gates can capture the reversal effect of the
word “not”.

Similar to CNN, the hidden state of
an RNN can also be used for semantic
matching between texts. In dialogue sys-
tems, Lowe et al. [89] proposed to match
a message with candidate responses with
Dual-LSTM, which encodes both the
message and response as fixed-size vectors
and then measure their inner product as
the basis to rank candidate responses.

3) RNN for Generating Language
A challenging task in NLP is generating
natural language, which is another natural
application of RNNs. Conditioned on
textual or visual data, deep LSTMs have
been shown to generate reasonable task-
specific text in tasks such as machine
translation, image captioning, etc.

In [67], the authors proposed a gen-
eral deep LSTM encoder-decoder
framework that maps a sequence to
another sequence. One LSTM is used to
encode the “source” sequence as a fixed-
size vector, which can be text in the
original language (machine translation),
the question to be answered (QA) or the
message to be replied to (dialogue sys-
tems). The vector is used as the initial
state of another LSTM, named the

decoder. The decoder generates tokens
one by one, while updating its hidden
state with the last generated token.

Sutskever et al. [67] experimented
with 4-layer LSTM on a machine trans-
lation task in an end-to-end fashion,
showing competitive results. In [91], the
same encoder-decoder framework is
employed to model human conversations.
When trained on more than 100 million
message-response pairs, the LSTM de
coder is able to generate very interesting
responses in the open domain. It is also
common to condition the LSTM de
coder on additional signal to achieve cer-
tain effects. In [92], the authors proposed
to condition the decoder on a constant
persona vector that captures the personal
information of an individual speaker. In
the above cases, language is generated
based mainly on the semantic vector rep-
resenting textual input. Similar frame-
works have also been successfully used in
image-based language generation, where
visual features are used to condition the
LSTM decoder (Fig. 9).

Visual QA is another task that
requires language generation based on
both textual and visual clues. Malinowski
et al. [93] were the first to provide an
end-to-end deep learning solution
where they predicted the answer as a
sequence of words conditioned on the
input image modeled by a CNN and
text modeled by an LSTM.

D. Attention Mechanism
One potential problem that the tradi-
tional encoder-decoder framework faces
is that the encoder at times is forced to
encode information which might not be
fully relevant to the task at hand. The
problem arises also if the input is long or
very information-rich and selective
encoding is not possible.

For example, the task of text summa-
rization can be cast as a sequence-to-
sequence learning problem, where the
input is the original text and the output
is the condensed version. Intuitively, it is
unrealistic to expect a fixed-size vector to
encode all information in a piece of text
whose length can potentially be very
long. Similar problems have also been
reported in machine translation [94].

CNN LSTM LSTM LSTM

Im
ag

e

p1 p2 pN –1

w1 w2 wN –1

Output

True Image Description

Figure 9 Image captioning using CNN image embedder followed by LSTM decoder. This
architecture was proposed by Vinyals et al. [90].

august 2018 | IEEE Computational intelligence magazine 65

In tasks such as text summarization
and machine translation, certain align-
ment exists between the input text and
the output text, which means that each
token generation step is highly related to
a certain part of the input text. This intu-
ition inspires the attention mechanism.
This mechanism attempts to ease the
above problems by allowing the decoder
to refer back to the input sequence. Spe-
cifically during decoding, in addition to
the last hidden state and generated token,
the decoder is also conditioned on a
“context” vector calculated based on the
input hidden state sequence.

Bahdanau et al. [94] first applied the
attention mechanism to machine trans-
lation, which improved the perfor-
mance especially for long sequences. In
their work, the attention signal over the
input hidden state sequence is deter-
mined with a multi-layer perceptron by
the last hidden state of the decoder. By
visualizing the attention signal over the
input sequence during each decod-
ing step, a clear alignment between
the source and target language can
be demonstrated.

A similar approach was applied to the
task of text summarization by Rush et al.
[95] where each output word in the
summary was conditioned on the input
sentence through an attention mecha-
nism. The authors performed abstractive
summarization which is not very con-
ventional as opposed to extractive sum-
marization, but can be scaled up to large
data with minimal linguistic input.

In image captioning, Xu et al. [96]
conditioned the LSTM decoder on dif-
ferent parts of the input image during
each decoding step. Attention signal was
determined by the previous hidden state
and CNN features. In [97], the authors
cast the syntactical parsing problem as a
sequence-to-sequence learning task by
linearizing the parsing tree. The atten-
tion mechanism proved to be more
data-efficient in this work. A further step
in referring to the input sequence was
to directly copy words or sub-sequences
of the input onto the output sequence
under a certain condition [98], which
was useful in tasks such as dialogue gen-
eration and text summarization. Copy-

ing or generation was chosen at each
time step during decoding [99].

In aspect-based sentiment analysis,
Wang et al. [100] proposed an attention-
based solution where they used aspect
embeddings to provide additional sup-
port during classification (Fig. 10). The
attention module focused on selective
regions of the sentence which affected
the aspect to be classified. Recently, Ma
et al. [101] augmented LSTM with a
hierarchical attention mechanism con-
sisting of a target-level attention and a
sentence-level attention to exploit com-
monsense knowledge for targeted
aspect-based sentiment analysis.

Given the intuitive applicability of
attention modules, they are still being
actively investigated by NLP researchers
and adopted for an increasing number
of applications.

V. Recursive Neural Networks
RNNs represent a natural way to model
sequences. Arguably, however, language
exhibits a natural recursive structure,
where words and sub-phrases combine
into phrases in a hierarchical manner.
Such structure can be represented by a
constituency parsing tree. Thus, tree-
structured models have been used to
better make use of such syntactic inter-

pretations of sentence structure [4]. Spe-
cifically, in a recursive neural network,
the representation of each non-terminal
node in a parsing tree is determined by
the representations of all its children.

A. Basic Model
In this section, we describe the basic
structure of recursive neural networks.
As shown in Fig. 11, the network g
defines a compositional function on the
representations of phrases or words (,b c
or ,)a p1 to compute the representation
of a higher-level phrase (p1 or).p2 The
representations of all nodes take the
same form.

Weighted Combination

LSTM LSTM LSTM

Hidden
Representation

Input Sentence

Aspect Embedding

h1

w1 w2 wn

hn

α

Attention

Figure 10 Aspect classification using attention. The original attention-based model in this
application was proposed by Wang et al. [100].

p2 = g (a, p1)
(on the mat)

p1 = g (b, c)
(the mat)

a (on) b (the) c (mat)

Figure 11 Recursive neural networks
iteratively form high-level representation
from lower-level representations.

66 IEEE Computational intelligence magazine | august 2018

In [4], the authors described multiple
variations of this model. In its simplest
form, g is defined as:

,tanh tanhp W
b
c p W

a
p1 2

1
= =c cm m; ;E E

�
(19)

in which the representation for each
node is a d-dimensional vector and

.W RD D2! #

Another variation is the MV-RNN
[102]. The idea is to represent every
word and phrase as both a matrix and a
vector. When two constituents are com-
bined, the matrix of one is multiplied
with the vector of the other:

,tanh tanhp W
Cb
Bc P W

B
CM1 1= =c cm m; ;E E 	

(20)

in which , , ,, , ,b c p B C PR RD D D
1 1! ! #

and .W RM
D D2! # Compared to the

vanilla form, MV-RNN parameterizes
the compositional function with matri-
ces corresponding to the constituents.

The recursive neural tensor network
(RNTN) is proposed to introduce more
interaction between the input vectors
without making the number of parame-
ters exceptionally large like MV-RNN.
RNTN is defined by:

	 tanhp
b
c V

b
c W

b
c

[:]
T

D
1

1= +c m; ; ;E E E 	
(21)

where V R D D D2 2! # # is a tensor that
defines multiple bilinear forms.

B. Applications
One natural application of recursive
neural networks is parsing [10]. A scor-
ing function is defined on the phrase
representation to calculate the plausibili-
ty of that phrase. Beam search is usually
applied for searching the best tree. The

model is trained with the max-margin
objective [103].

Based on recursive neural networks
and the parsing tree, Socher et al. [4]
proposed a phrase-level sentiment an
alysis framework, where each node in
the parsing tree can be assigned a sen-
timent label.

Socher et al. [102] classified semantic
relationships such as cause-effect or
topic-message between nominals in a
sentence by building a single composi-
tional semantics for the minimal constit-
uent including both terms. Bowman et
al. [104] proposed to classify the logical
relationship between sentences with
recursive neural networks. The represen-
tations for both sentences are fed to
another neural network for relationship
classification. They show that both
vanilla and tensor versions of the recur-
sive unit performed competitively in a
textual entailment dataset.

To avoid the gradient vanishing
problem, LSTM units have also been
applied to tree structures in [105]. The
authors showed improved sentence rep-
resentation over linear LSTM models,
as clear improvement in sentiment
analysis and sentence relatedness tests
was observed.

VI. Deep Reinforced Models and
Deep Unsupervised Learning

A. Reinforcement Learning for
Sequence Generation
Reinforcement learning is a method of
training an agent to perform discrete
actions before obtaining a reward. In
NLP, tasks concerning language genera-
tion can sometimes be cast as reinforce-
ment learning problems.

In its original formulation, RNN
language generators are typically trained
by maximizing the likelihood of each

token in the ground-truth sequence
given the current hidden state and the
previous tokens. Termed “teacher forc-
ing”, this training scheme provides the
real sequence prefix to the generator
during each generation (loss evaluation)
step. At test time, however, ground-truth
tokens are then replaced by a token gen-
erated by the model itself. This discrep-
ancy between training and inference,
termed “exposure bias” [106], [107], can
yield errors that can accumulate quickly
along the generated sequence.

Another problem with the word-
level maximum likelihood strategy,
when training auto-regressive language
generation models, is that the training
objective is different from the test met-
ric. It is unclear how the n-gram overlap
based metrics (BLEU, ROUGE) used to
evaluate these tasks (machine translation,
dialogue systems, etc.) can be optimized
with the word-level training strategy.
Empirically, dialogue systems trained
with word-level maximum likelihood
also tend to produce dull and short-
sighted responses [108], while text sum-
marization tends to produce incoherent
or repetitive summaries [99].

Reinforcement learning offers a pro-
spective to solve the above problems to a
certain extent. In order to optimize the
non-differentiable evaluation metrics di-
rectly, Ranzato et al. [107] applied the
REINFORCE algorithm [109] to train
RNN-based models for several se-
quence generation tasks (e.g., text sum-
marization, machine translation and
image captioning), leading to improve-
ments compared to previous supervised
learning methods. In such a framework,
the generative model (RNN) is viewed
as an agent, which interacts with the ex-
ternal environment (the words and the
context vector it sees as input at every
time step). The parameters of this agent
defines a policy, whose execution results
in the agent picking an action, which
refers to predicting the next word in the
sequence at each time step. After taking
an action the agent updates its internal
state (the hidden units of RNN). Once
the agent has reached the end of a se-
quence, it observes a reward. This reward
can be any developer-defined metric

Recurrent Neural Networks use the idea of processing
sequential information. The term “recurrent” applies as
they perform the same computation over each token
of the sequence and each step is dependent on the
previous computations and results.

august 2018 | IEEE Computational intelligence magazine 67

tailored to a specific task. For example,
Li et al. [108] defined 3 rewards for a
generated sentence based on ease of an-
swering, information flow, and seman-
tic coherence.

There are two well-known shortcom-
ings of reinforcement learning. To make
reinforcement learning tractable, it is
desired to carefully handle the state and
action space [110], [111], which in the
end may restrict expressive power and
learning capacity of the model. Secondly,
the need for training the reward func-
tions makes such models hard to design
and measure at run time [112], [113].

Another approach for sequence-level
supervision is to use the adversarial
training technique [114], where the
training objective for the language gen-
erator is to fool another discrimina-
tor trained to distinguish generated
sequences from real sequences. The gen-
erator G and the discriminator D are
trained jointly in a min-max game
which ideally leads to ,G generating
sequences indistinguishable from real
ones. This approach can be seen as a
var iation of generative adversar ial
networks in [114], where G and D are
conditioned on certain stimuli (for ex-
ample, the source image in the task of
image captioning). In practice, the above
scheme can be realized under the rein-
forcement learning paradigm with poli-
cy gradient. For dialogue systems, the
discriminator is analogous to a human
Turing tester, who discriminates be-
tween human and machine-produced
dialogues [115].

B. Unsupervised Sentence
Representation Learning
Similar to word embeddings, distributed
representation for sentences can also be
learned in an unsupervised fashion. The
result of such unsupervised learning are
“sentence encoders”, which map arbi-
trary sentences to fixed-size vectors that
can capture their semantic and syntactic
properties. Usually an auxiliary task has
to be defined for the learning process.

Similar to the skip-gram model [8]
for learning word embeddings, the skip-
thought model [116] was proposed for
learning sentence representation, where

the auxiliary task was to predict two
adjacent sentences (before and after)
based on the given sentence. The
seq2seq model was employed for this
learning task. One LSTM encoded the
sentence to a vector (distributed repre-
sentation). Two other LSTMs decoded
such representation to generate the tar-
get sequences. The standard seq2seq
training process was used. After training,
the encoder could be seen as a generic
feature extractor (word embeddings
were also learned in the same time).

Kiros et al. [116] verified the quality
of the learned sentence encoder on a
range of sentence classification tasks,
showing competitive results with a sim-
ple linear model based on the static fea-
ture vectors. However, the sentence
encoder can also be fine-tuned in the
supervised learning task as part of the
classifier. Dai and Le [117] investigated
the use of the decoder to reconstruct the
encoded sentence itself, which resembled
an autoencoder [118].

Language modeling could also be
used as an auxiliary task when training
LSTM encoders, where the supervision
signal came from the prediction of the
next token. Dai and Le [117] conducted
experiments on initializing LSTM mod-
els with learned parameters on a variety
of tasks. They showed that pre-training
the sentence encoder on a large unsu-
pervised corpus yielded better accuracy
than only pre-training word embeddings.
Also, predicting the next token turned
out to be a worse auxiliary objective
than reconstructing the sentence itself, as
the LSTM hidden state was only respon-
sible for a rather short-term objective.

C. Deep Generative Models
Recent success in generating realistic
images has driven a series of efforts on
applying deep generative models to text

data. The promise of such research is to
discover rich structure in natural lan-
guage while generating realistic sentences
from a latent code space. In this section,
we review recent research on achieving
this goal with variational autoencoders
(VAEs) [119] and generative adversarial
networks (GANs) [114].

Standard sentence autoencoders, as in
the last section, do not impose any con-
straint on the latent space, as a result,
they fail when generating realistic sen-
tences from arbitrary latent representa-
tions [120]. The representations of these
sentences may often occupy a small
region in the hidden space and most of
regions in the hidden space do not nec-
essarily map to a realistic sentence [121].
They cannot be used to assign probabili-
ties to sentences or to sample novel sen-
tences [120].

The VAE imposes a prior distribu-
tion on the hidden code space which
makes it possible to draw proper samples
from the model. It modifies the autoen-
coder architecture by replacing the
deterministic encoder function with a
learned posterior recognition model.
The model consists of encoder and gen-
erator networks which encode data
examples to latent representation and
generate samples from the latent space,
respectively. It is trained by maximizing
a variational lower bound on the log-
likelihood of observed data under the
generative model.

Bowman et al. [120] proposed an
RNN-based variational autoencoder
generative model that incorporated dis-
tributed latent representations of entire
sentences (Fig. 12). Unlike vanilla RNN
language models, this model worked
from an explicit global sentence repre-
sentation. Samples from the prior over
these sentence representations produced
diverse and well-formed sentences.

Recent success in generating realistic images has
driven a series of efforts on applying deep generative
models to text data. The promise of such research is
to discover rich structure in natural language while
generating realistic sentences from a latent code space.

68 IEEE Computational intelligence magazine | august 2018

Hu et al. [122] proposed generating
sentences whose attributes are con-
trolled by learning disentangled latent
representations with designated seman-
tics. The authors augmented the latent
code in the VAE with a set of structured
variables, each targeting a salient and
independent semantic feature of sen-
tences. The model incorporated VAE
and attribute discriminators, in which
the VAE component trained the genera-
tor to reconstruct real sentences for gen-
erating plausible text, while the discrim-
inators forced the generator to produce
attributes coherent with the structured
code. When trained on a large number
of unsupervised sentences and a small
number of labeled sentences, Hu et al.
[122] showed that the model was able to
generate plausible sentences conditioned
on two major attributes of English: tense
and sentiment.

GAN is another class of generative
model composed of two competing
networks. A generative neural network
decodes latent representation to a data
instance, while the discriminative net-
work is simultaneously taught to dis-

criminate between instances from the
true data distribution and synthesized
instances produced by the generator.
GAN does not explicitly represent the
true data distribution ().p x

Zhang et al. [121] proposed a frame-
work for employing LSTM and CNN
for adversarial training to generate realis-
tic text. The latent code z was fed to the
LSTM generator at every time step.
CNN acted as a binary sentence classifier
which discriminated between real data
and generated samples. One problem
with applying GAN to text is that the
gradients from the discriminator cannot
properly back-propagate through discrete
variables. In [121], this problem was
solved by making the word prediction at
every time “soft” at the word embedding
space. Yu et al. [123] proposed to bypass
this problem by modeling the generator
as a stochastic policy. The reward signal
came from the GAN discriminator
judged on a complete sequence, and was
passed back to the intermediate state-
action steps using Monte Carlo search.

The evaluation of deep generative
models has been challenging. For text, it

is possible to create oracle training data
from a fixed set of grammars and then
evaluate generative models based on
whether (or how well) the generated
samples agree with the predefined
grammar [124]. Another strategy is to
evaluate BLEU scores of samples on a
large amount of unseen test data. The
ability to generate similar sentences to
unseen real data is considered a mea-
surement of quality [123].

VII. Memory-Augmented Networks
The attention mechanism stores a series
of hidden vectors of the encoder, which
the decoder is allowed to access during
the generation of each token. Here, the
hidden vectors of the encoder can be
seen as entries of the model’s “internal
memory”. Recently, there has been a
surge of interest in coupling neural net-
works with a form of memory, which
the model can interact with.

In [135], the authors proposed mem-
ory networks for QA tasks. In synthetic
QA, a series of statements (memory
entries) were provided to the model as
potential supporting facts to the ques-
tion. The model learned to retrieve one
entry at a time from memory based on
the question and previously retrieved
memory. In large-scale realistic QA, a
large set of commonsense knowledge in
the form of (subject, relation, object) tri-
ples were used as memory.

Sukhbaatar et al. [136] extended this
work and proposed end-to-end mem-
ory networks, where memory entries
were retrieved in a “soft” manner with
attention mechanism, thus enabling end-
to-end training. Multiple rounds (hops)
of information retrieval from memory
were shown to be essential to good per-
formance and the model was able to
retrieve and reason about several sup-
porting facts to answer a specific ques-
tion. They also showed a special use of
the model for language modeling,
where each word in the sentence was
seen as a memory entry. With multiple
hops, the model yielded results compa-
rable to deep LSTM models.

Furthermore, dynamic memory net-
works (DMN) [128] improved upon
previous memory-based models by

LSTM LSTM

Linear Linear

LSTM

µ σ

z LSTM LSTM LSTM

Decoder

Encoder

x1 x2 x3

y1

y1 y2

y2 <EOS>

<EOS>

Figure 12 RNN-based VAE network for sentence generation proposed by Bowman et al. [120].

A generative neural network decodes latent representation
to a data instance, while the discriminative network is
simultaneously taught to discriminate between instances
from the true data distribution and synthesized instances
produced by the generator.

august 2018 | IEEE Computational intelligence magazine 69

employing neural network models for in-
put representation, attention, and answer
mechanisms. The resulting model was ap-
plicable to a wide range of NLP tasks
(QA, POS tagging, and sentiment analysis),
as every task could be cast to the <memo-
ry, question, answer> triple format. Xiong
et al. [137] applied the same model to vi-
sual QA and proved that the memory
module was applicable to visual signals.

VIII. Performance of Different
Models on Different NLP Tasks
We summarize the performance of a
series of deep learning methods on stan-
dard datasets developed in recent years
on 7 major NLP topics in Tables 2–7.
Our goal is to show the readers com-
mon datasets used in the community
and state-of-the-art results along with
different models.

A. POS Tagging
The WSJ-PTB (the Wall Street Journal
part of the Penn Treebank Dataset) cor-
pus contains 1.17 million tokens and has

been widely used for developing and
evaluating POS tagg ing systems.
Giménez and Marquez [125] employed
one-against-all SVM based on manual-
ly-defined features within a seven-
word window, in which some basic
n-gram patterns were evaluated to form
binary features such as: “previous word is
the”, “two preceding tags are DT NN”,
etc. One characteristic of the POS tag-
ging problem was the strong dependen-

cy between adjacent tags. With a simple
left-to-right tagging scheme, this meth-
od modeled dependencies between
adjacent tags only by feature engineer-
ing. In an effort to reduce feature engi-
neering, Collobert et al. [5] relied on
only word embeddings within the word
window with a multi-layer perceptron.
Incorporating CRF was proven useful
in [5]. Santos and Zadrozny [31] concat-
enated word embeddings with character

TABLE 2 POS tagging.

Paper Model WSJ-PTB (per-token accuracy %)

Giménez and Marquez [125] SVM with manual feature pattern 97.16

Collobert et al. [5] MLP with word embeddings + CRF 97.29

Santos and Zadrozny [31] MLP with character + word embeddings 97.32

Huang et al. [126] LSTM 97.29

Huang et al. [126] Bidirectional LSTM 97.40

Huang et al. [126] LSTM-CRF 97.54

Huang et al. [126] Bidirectional LSTM-CRF 97.55

Andor et al. [127] Transition-based neural network 97.45

Kumar et al. [128] DMN 97.56

TABLE 3 Parsing (UAS/LAS = Unlabeled/labeled Attachment Score; WSJ = The Wall Street Journal Section of Penn Treebank).

Parsing type Paper Model WSJ

Dependency Parsing Chen and Manning [129] Fully-connected NN with features including POS 91.8/89.6 (UAS/LAS)

Weiss et al. [130] Deep fully-connected NN with features including POS 94.3/92.4 (UAS/LAS)

Dyer et al. [131] Stack-LSTM 93.1/90.9 (UAS/LAS)

Zhou et al. [132] Beam contrastive model 93.31/92.37 (UAS/LAS)

Constituency Parsing Petrov et al. [133] Probabilistic context-free grammars (PCFG) 91.8 (F1 Score)

Socher et al. [10] Recursive neural networks 90.29 (F1 Score)

Zhu et al. [134] Feature-based transition parsing 91.3 (F1 Score)

Vinyals et al. [97] seq2seq learning with LSTM+Attention 93.5 (F1 Score)

TABLE 4 Named-Entity Recognition.

Paper Model CoNLL 2003 (F1%)

Collobert et al. [5] MLP with word
embeddings+gazetteer

89.59

Passos et al. [138] Lexicon Infused Phrase Embeddings 90.90

Chiu and Nichols [139] Bi-LSTM with word+char+lexicon
embeddings

90.77

Luo et al. [140] Semi-CRF jointly trained with linking 91.20

Lample et al. [85] Bi-LSTM-CRF with word+char
embeddings

90.94

Lample et al. [85] Bi-LSTM with word+char embeddings 89.15

Strubell et al. [141] Dilated CNN with CRF 90.54

70 IEEE Computational intelligence magazine | august 2018

embeddings to better exploit morpho-
logical clues. In [31], the authors did not
consider CRF, but since word-level
decision was made on a context win-
dow, dependencies between adjacent
tags were modeled implicitly. Huang
et al. [126] concatenated word embed-
dings and manually-designed word-level
features and employed bidirectional
LSTM to model arbitrarily long context.
A series of ablative analysis suggested that
bi-directionality and CRF both boosted
performance. Andor et al. [127] showed a
transition-based approach that produces
competitive result with a simple feed-
forward neural network. When applied
to sequence tagging tasks, DMNs [128]
essentially allowed for attending over the

context multiple times by treating each
RNN hidden state as a memory entry,
each time focusing on different parts of
the context.

B. Parsing
There are two types of parsing: depen-
dency parsing, which connects individu-
al words with their relations, and
constituency parsing, which iteratively
breaks text into sub-phrases. Transition-
based methods are a popular choice
since they are linear in the length of the
sentence. The parser makes a series of
decisions that read words sequentially
from a buffer and combine them incre-
mentally into the syntactic structure
[129]. At each time step, the decision is

made based on a stack containing avail-
able tree nodes, a buffer containing
unread words and the obtained set of
dependency arcs. Chen and Manning
[129] modeled the decision making at
each time step with a neural network
with one hidden layer. The input layer
contained embeddings of certain words,
POS tags and arc labels, which came
from the stack, the buffer and the set of
arc labels.

Tu et al. [61] extended the work of
Chen and Manning [129] by employing
a deeper model with 2 hidden layers.
However, both Tu et al. [61] and Chen
and Manning [129] relied on manual
feature selecting from the parser state,
and they only took into account a lim-
ited number of latest tokens. Dyer et al.
[131] proposed stack-LSTMs to model
arbitrarily long history. The end pointer
of the stack changed position as the
stack of tree nodes could be pushed and
popped. Zhou et al. [132] integrated
beam search and contrastive learning for
better optimization.

Transition-based models were applied
to constituency parsing as well. Zhu et al.
[134] based each transition action on
features such as the POS tags and con-
stituent labels of the top few words of
the stack and the buffer. By uniquely
representing the parsing tree with a lin-
ear sequence of labels, Vinyals et al. [97]

TABLE 5 Semantic Role Labeling.

Paper Model CoNLL2005 (F1%) CoNLL2012 (F1%)

Collobert et al. [5] CNN with parsing features 76.06

Täckström et al. [142] Manual features with DP for inference 78.6 79.4

Zhou and Xu [143] Bidirectional LSTM 81.07 81.27

He et al. [144] Bidirectional LSTM with highway connections 83.2 83.4

TABLE 6 Sentiment Classification (SST-1 = Stanford Sentiment Treebank,
fine-grained 5 classes Socher et al. [4]; SST-2: the binary version of SST-1;
Numbers are accuracies (%)).

Paper Model SST-1 SST-2

Socher et al. [4] Recursive Neural Tensor Network 45.7 85.4

Kim [44] Multichannel CNN 47.4 88.1

Kalchbrenner et al. [43] DCNN with k-max pooling 48.5 86.8

Tai et al. [105] Bidirectional LSTM 48.5 87.2

Le and Mikolov [145] Paragraph Vector 48.7 87.8

Tai et al. [105] Constituency Tree-LSTM 51.0 88.0

Yu et al. [146] Tree-LSTM with refined word
embeddings

54.0 90.3

Kumar et al. [128] DMN 52.1 88.6

TABLE 7 Machine translation (Numbers are BLEU scores).

Paper Model
WMT2014
English2German

WMT2014
English2French

Cho et al. [75] Phrase table with neural features 34.50

Sutskever et al. [67] Reranking phrase-based SMT best list with LSTM seq2seq 36.5

Wu et al. [147] Residual LSTM seq2seq + Reinforcement learning refining 26.30 41.16

Gehring et al. [148] seq2seq with CNN 26.36 41.29

Vaswani et al. [149] Attention mechanism 28.4 41.0

august 2018 | IEEE Computational intelligence magazine 71

applied the seq2seq learning method to
this problem.

C. Named-Entity Recognition
CoNLL 2003 has been a standard Eng-
lish dataset for NER, which concentrates
on four types of named entities: people,
locations, organizations and miscellaneous
entities. NER is one of the NLP prob-
lems where lexicons can be very useful.
Collobert et al. [5] first achieved compet-
itive results with neural structures aug-
mented by gazetteer features. Chiu and
Nichols [139] concatenated lexicon fea-
tures, character embeddings and word
embeddings and fed them as input to a
bidirectional LSTM. On the other hand,
Lample et al. [85] only relied on charac-
ter and word embeddings, with pre-train-
ing embeddings on large unsupervised
corpora, they achieved competitive results
without using any lexicon. Similar to
POS tagging, CRF also boosted the per-
formance of NER, as demonstrated by
the comparison in [85]. Overall, we see
that bidirectional LSTM with CRF acts
as a strong model for NLP problems
related to structured prediction.

Passos et al. [138] proposed to modify
skip-gram models to better learn entity-
type related word embeddings that can
leverage information from relevant lexi-
cons. Luo et al. [140] jointly optimized
the entities and the linking of entities to
a KB. Strubell et al. [141] proposed to use
dilated convolutions, defined over a
wider effective input width by skipping
over certain inputs at a time, for better
parallelization and context modeling.
The model showed significant speedup
while retaining accuracy.

D. Semantic Role Labeling
Semantic role labeling (SRL) aims to
discover the predicate-argument struc-
ture of each predicate in a sentence. For
each target verb (predicate), all constit-
uents in the sentence which take a
semantic role of the verb are recognized.
Typical semantic arguments include
Agent, Patient, Instrument, etc., and also
adjuncts such as Locative, Temporal,
Manner, Cause, etc. [143]. Table 5 shows
the performance of different models on
the CoNLL 2005&2012 datasets.

Traditional SRL systems consist of
several stages: producing a parse tree,
identifying which parse tree nodes rep-
resent the arguments of a given verb,
and finally classifying these nodes to
determine the corresponding SRL tags.
Each classification process usually entails
extracting numerous features and feed-
ing them into statistical models [5].

Given a predicate, Täckström et al.
[142] scored a constituent span and its
possible role to that predicate with a
series of features based on the parse tree.
They proposed a dynamic programming
algorithm for efficient inference. Collob-
ert et al. [5] achieved comparable results
with a convolution neural networks aug-
mented by parsing information provided
in the form of additional look-up tables.
Zhou and Xu [143] proposed to use
bidirectional LSTM to model arbitrarily
long context, which proved to be suc-
cessful without any parsing tree informa-
tion. He et al. [144] further extended this
work by introducing highway connec-
tions [150], more advanced regulariza-
tion and ensemble of multiple experts.

E. Sentiment Classification
The Stanford Sentiment Treebank (SST)
dataset contains sentences taken from
the movie review website Rotten Toma-
toes. It was proposed by Pang and Lee
[151] and subsequently extended by
Socher et al. [4]. The annotation scheme
has inspired a new dataset for sentiment
analysis, called CMU-MOSI, where
sentiment is studied in a multimodal
setup [152].

Socher et al. [4] and Tai et al. [105]
were both recursive networks that relied
on constituency parsing trees. Their dif-
ference shows the effectiveness of
LSTM over vanilla RNN in modeling
sentences. On the other hand, tree-
LSTM performed better than linear
bidirectional LSTM, implying that tree
structures can potentially better capture
the syntactical property of natural sen-

tences. Yu et al. [146] proposed to refine
pre-trained word embeddings with a
sentiment lexicon, observing improved
results based on [105].

Kim [44] and Kalchbrenner et al.
[43] both used convolutional layers. The
model [44] was similar to the one in
Fig. 5, while Kalchbrenner et al. [43]
constructed the model in a hierarchical
manner by interweaving k-max pooling
layers with convolutional layers.

F. Machine Translation
The phrase-based SMT framework
[160] factorized the translation model
into the translation probabilities of
matching phrases in the source and tar-
get sentences. Cho et al. [75] proposed
to learn the translation probability of a
source phrase to a corresponding target
phrase with an RNN encoder-decoder.
Such a scheme of scoring phrase pairs
improved translation performance.
Sutskever et al. [67], on the other hand,
re-scored the top 1000 best candidate
translations produced by an SMT system
with a 4-layer LSTM seq2seq model.
Dispensing the traditional SMT system
entirely, Wu et al. [147] trained a deep
LSTM network with 8 encoder and
8 decoder layers with residual connec-
tions as well as attention connections.
Wu et al. [147] then refined the model
by using reinforcement learning to
directly optimize BLEU scores, but they
found that the improvement in BLEU
scores by this method did not reflect in
human evaluation of translation quality.
Recently, Gehring et al. [148] pro-
posed a CNN-based seq2seq learning
model for machine translation. The rep-
resentation for each word in the input is
computed by CNN in a parallelized
style for the attention mechanism. The
decoder state is also determined by
CNN with words that are already pro-
duced. Vaswani et al. [149] proposed a
self-attention-based model and dispensed
convolutions and recurrences entirely.

Recently, there has been a surge of interest in coupling
neural networks with a form of memory, which the model
can interact with.

72 IEEE Computational intelligence magazine | august 2018

G. Question Answering
QA problems take many forms. Some
rely on large KBs to answer open-
domain questions, while others answer a
question based on a few sentences or a
paragraph (reading comprehension). For
the former, we list (see Table 8) several
experiments conducted on a large-scale
QA dataset introduced by [153], where
14 M commonsense knowledge triples
are considered as the KB. Each question
can be answered with a single-relation
query. For the latter, we consider (see
Table 8) the synthetic dataset of bAbI,
which requires the model to reason over
multiple related facts to produce the right
answer. It contains 20 synthetic tasks that
test a model’s ability to retrieve relevant
facts and reason over them. Each task
focuses on a different skill such as basic
coreference and size reasoning.

The central problem of learning to
answer single-relation queries is to find

the single supporting fact in the data-
base. Fader et al. [153] proposed to
tackle this problem by learning a lexicon
that maps natural language patterns to
database concepts (entities, relations and
question patterns) based on a question
paraphrasing dataset. Bordes et al. [154]
embedded both questions and KB tri-
ples as dense vectors and scored them
with inner product.

Weston et al. [135] took a similar
approach by treating the KB as long-
term memory, while casting the prob-
lem in the framework of a memory net-
work. On the bAbI dataset, Sukhbaatar
et al. [136] improved upon the original
memory networks model [135] by mak-
ing the training procedure agnostic of
the actual supporting fact, while Kumar
et al. [128] used neural sequence mod-
els (GRU) instead of neural bag-of-
words models as in [136] and [135] to
embed memories.

H. Dialogue Systems
Two types of dialogue systems have
been developed: generation-based mod-
els and retrieval-based models.

In Table 9, the Twitter Conversation
Triple Dataset is typically used for eval-
uating generation-based dialogue
systems, containing 3-turn Twitter con-
versation instances. One commonly
used evaluation metric is BLEU [161],
although it is commonly acknowledged
that most automatic evaluation metrics
are not completely reliable for dialogue
evaluation and additional human evalu-
ation is often necessary. Ritter et al.
[155] employed the phrase-based statis-
tical machine translation (SMT) frame-
work to “translate” the message to its
appropr iate response. Sordoni et al.
[156] reranked the 1000 best responses
produced by SMT with a context-sen-
sitive RNN encoder-decoder frame-
work, observing substantial gains. Li
et al. [157] reported results on replacing
the traditional maximum log likelihood
training objective with the maximum
mutual information training objective,
in an effort to produce interesting and
diverse responses, both of which are
tested on a 4-layer LSTM encoder-
decoder framework.

TABLE 8 Question answering.

Paper Model bAbI (Mean accuracy %) Farbes (Accuracy %)

Fader et al. [153] Paraphrase-driven lexicon learning 0.54

Bordes et al. [154] Weekly supervised embedding 0.73

Weston et al. [135] Memory networks 93.3 0.83

Sukhbaatar et al. [136] End-to-end memory networks 88.4

Kumar et al. [128] DMN 93.6

TABLE 9 Dialogue systems.

Paper Model
Twitter Conversation
Triple Dataset (BLEU)

Ubuntu Dialogue Dataset
(recall 1@10%)

Ritter et al. [155] SMT 3.60

Sordoni et al. [156] SMT+neural reranking 4.44

Li et al. [157] LSTM seq2seq 4.51

Li et al. [157] LSTM seq2seq with MMI objective 5.22

Lowe et al. [89] Dual LSTM encoders for semantic matching 55.22

Dodge et al. [158] Memory networks 63.72

Zhou et al. [159] Sentence-level CNN-LSTM encoder 66.15

We expect to see more deep learning models whose
internal memory (bottom-up knowledge learned from
the data) is enriched with an external memory
(top-down knowledge inherited from a knowledge base).

august 2018 | IEEE Computational intelligence magazine 73

The response retrieval task is defined
as selecting the best response from a re-
pository of candidate responses. Such a
model can be evaluated by the recall1@k
metric, where the ground-truth re-
sponse is mixed with k 1- random re-
sponses. The Ubuntu dialogue dataset
was constructed by scraping multi-turn
Ubuntu trouble-shooting dialogues
from an online chatroom [89]. Lowe et
al. [89] used LSTMs to encode the mes-
sage and response, and then inner prod-
uct of the two sentence embeddings is
used to rank candidates.

Zhou et al. [159] proposed to better
exploit the multi-turn nature of human
conversation by employing the LSTM
encoder on top of sentence-level CNN
embeddings, similar to [162]. Dodge et
al. [158] cast the problem in the frame-
work of a memory network, where the
past conversation was treated as memory
and the latest utterance was considered
as a “question” to be responded to. The
authors showed that using simple neural
bag-of-word embedding for sentences
can yield competitive results.

IX. Conclusion
Deep learning offers a way to harness
large amount of computation and data
with little engineering by hand [163].
With distributed representation, various
deep models have become the new
state-of-the-art methods for NLP prob-
lems. Supervised learning is the most
popular practice in recent deep learning
research for NLP. In many real-world
scenarios, however, we have unlabeled
data which require advanced unsuper-
vised or semi-supervised approaches. In
cases where there is lack of labeled data
for some particular classes or the appear-
ance of a new class while testing the
model, strategies like zero-shot learning
should be employed. These learning
schemes are still in their developing
phase but we expect deep learning
based NLP research to be driven in the
direction of making better use of unla-
beled data. We expect such trend to
continue with more and better model
designs. We expect to see more NLP
applications that employ reinforcement
learning methods, e.g., dialogue systems.

We also expect to see more research on
multimodal learning [164] as, in the real
world, language is often grounded on
(or correlated with) other signals.

Finally, we expect to see more deep
learning models whose internal mem-
ory (bottom-up knowledge learned
from the data) is enr iched with an
external memory (top-down knowledge
inherited from a KB). Coupling sym-
bolic and sub-symbolic AI will be key
for stepping forward in the path from
NLP to natural language understanding.
Relying on machine learning, in fact, is
good to make a ‘good guess’ based on
past experience, because sub-symbolic
methods encode correlation and their
decision-making process is probabilistic.
Natural language understanding, how-
ever, requires much more than that. To
use Noam Chomsky’s words, “you do
not get discoveries in the sciences by
taking huge amounts of data, throwing
them into a computer and doing statisti-
cal analysis of them: that’s not the way
you understand things, you have to have
theoretical insights”.

References
[1] E. Cambria and B. White, “Jumping NLP curves: A
review of natural language processing research,” IEEE
Comput. Intell. Mag., vol. 9, no. 2, pp. 48–57, May 2014.
[2] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and
S. Khudanpur, “Recurrent neural network based lan-
guage model,” in Proc. Interspeech, vol. 2, p. 3, 2010.
[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean, “Distributed representations of words and
phrases and their compositionality,” in Proc. Advances
Neural Information Processing Systems, 2013, pp. 3111–3119.
[4] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D.
Manning, A. Ng, and C. Potts, “Recursive deep mod-
els for semantic compositionality over a sentiment tree-
bank,” in Proc. Conf. Empirical Methods Natural Language
Processing, 2013, pp. 1631–1642.
[5] R. Collobert, J. Weston, L. Bottou, M. Karlen, K.
Kavukcuoglu, and P. Kuksa, “Natural language process-
ing (almost) from scratch,” J. Mach. Learn. Res., vol. 12,
pp. 2493–2537, Aug. 2011.
[6] Y. Goldberg, “A primer on neural network models for
natural language processing,” J. Artif. Intell. Res., vol. 57,
pp. 345–420, Nov. 2016.
[7] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin,
“A neural probabilistic language model,” J. Mach. Learn.
Res., vol. 3, pp. 1137–1155, Feb. 2003.
[8] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Effi-
cient estimation of word representations in vector space,”
arXiv Preprint, arXiv:1301.3781, 2013.
[9] J. Weston, S. Bengio, and N. Usunier, “Wsabie: Scal-
ing up to large vocabulary image annotation,” Proc. Int.
Joint Conf. Artificial Intelligence., 2011, vol. 11, pp. 2764–
2770.
[10] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng,
“Parsing natural scenes and natural language with recur-
sive neural networks,” in Proc. 28th Int. Joint Conf. Machine
Learning, 2011, pp. 129–136.
[11] P. D. Turney and P. Pantel, “From frequency to
meaning: Vector space models of semantics,” J. Artif. In-
tell. Res., vol. 37, pp. 141–188, Nov. 2010.

[12] E. Cambria, S. Poria, A. Gelbukh, and M. Thelwall,
“Sentiment analysis is a big suitcase,” IEEE Intell. Syst.,
vol. 32, no. 6, pp. 74–80, Nov. 2017.
[13] X. Glorot, A. Bordes, and Y. Bengio, “Domain ad-
aptation for large-scale sentiment classif ication: A deep
learning approach,” in Proc. 28th Int. Conf. Machine Learn-
ing, 2011, pp. 513–520.
[14] K. M. Hermann and P. Blunsom, “The role of syntax
in vector space models of compositional semantics,” in
Proc. 51st Annu. Meeting Association Computational Linguis-
tics, 2013, vol. 1, pp. 894–904.
[15] J. L. Elman, “Distributed representations, simple
recurrent networks, and grammatical structure,” Mach.
Learn., vol. 7, no. 2–3, pp. 195–225, 1991.
[16] A. M. Glenberg and D. A. Robertson, “Symbol
grounding and meaning: A comparison of high-dimen-
sional and embodied theories of meaning,” J. Memory
Lang., vol. 43, no. 3, pp. 379–401, Oct. 2000.
[17] S. T. Dumais, “Latent semantic analysis,” Annu. Rev.
Inf. Sci. Tech., vol. 38, no. 1, pp. 188–230, Nov. 2004.
[18] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent
dirichlet allocation,” J. Mach. Learn. Res., vol. 3, pp.
993–1022, 2003.
[19] R. Collobert and J. Weston, “A unified architecture
for natural language processing: Deep neural networks
with multitask learning,” in Proc. 25th Int. Conf. Machine
Learning, 2008, pp. 160–167.
[20] A. Gittens, D. Achlioptas, and M. W. Mahoney,
“Skip-gram-zipf + uniform = vector additivity,” in Proc.
55th Annu. Meeting Association Computational Linguistics,
2017, vol. 1, pp. 69–76.
[21] J. Pennington, R. Socher, and C. D. Manning,
“Glove: Global vectors for word representation,” in Proc.
Conf. Empirical Methods Natural Language Processing, 2014,
vol. 14, pp. 1532–1543.
[22] R. Johnson and T. Zhang, “Semi-supervised con-
volutional neural networks for text categorization via
region embedding,” in Proc. Advances Neural Information
Processing Systems, 2015, pp. 919–927.
[23] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng,
and C. D. Manning, “Semi-supervised recursive auto-
encoders for predicting sentiment distributions,” in Proc.
Conf. Empirical Methods Natural Language Processing, 2011,
pp. 151–161.
[24] X. Wang, Y. Liu, C. Sun, B. Wang, and X. Wang,
“Predicting polarities of tweets by composing word em-
beddings with long short-term memory,” in Proc. Annu.
Meeting Association Computational Linguistics, 2015, pp.
1343–1353.
[25] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B.
Qin, “Learning sentiment-specif ic word embedding for
twitter sentiment classif ication,” in Proc. Annu. Meeting
Association Computational Linguistics, 2014, pp. 1555–1565.
[26] I. Labutov and H. Lipson, “Re-embedding words,”
in Proc. Annu. Meeting Association Computational Linguistics,
2013, pp. 489–493.
[27] S. Upadhyay, K. Chang, M. Taddy, A. Kalai, and
J. Zou, “Beyond bilingual: Multi-sense word embed-
dings using multilingual context,” arXiv Preprint, arX-
iv:1706.08160, 2017.
[28] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush,
“Character-aware neural language models,” in Proc. As-
sociation Advancement Artificial Intelligence Conf., 2016, pp.
2741–2749.
[29] C. N. Dos Santos and M. Gatti, “Deep convolutional
neural networks for sentiment analysis of short texts,” in
Proc. Int. Conf. Computational Linguistics, 2014, pp. 69–78.
[30] C. N d Santos and V. Guimaraes, “Boosting named
entity recognition with neural character embeddings,”
arXiv Preprint, arXiv:1505.05008, 2015.
[31] C. D. Santos and B. Zadrozny, “Learning character-
level representations for part-of-speech tagging,” in Proc.
31st Int. Conf. Machine Learning, 2014, pp. 1818–1826.
[32] Y. Ma, E. Cambria, and S. Gao, “Label embedding
for zero-shot f ine-grained named entity typing,” in Proc.
Int. Conf. Computational Linguistics, Osaka, 2016, pp.
171–180.
[33] X. Chen, L. Xu, Z. Liu, M. Sun, and H. Luan, “Joint
learning of character and word embeddings,” in Proc. Int.
Joint Conf. Artificial Intelligence, 2015, pp. 1236–1242.
[34] X. Zheng, H. Chen, and T. Xu, “Deep learning for
chinese word segmentation and pos tagging,” in Proc.

74 IEEE Computational intelligence magazine | august 2018

Conf. Empirical Methods Natural Language Processing, 2013,
pp. 647–657.
[35] H. Peng, E. Cambria, and X. Zou, “Radical-based
hierarchical embeddings for chinese sentiment analysis
at sentence level,” in Proc. Int. Florida Artificial Intelligence
Research Society Conf., 2017, pp. 347–352.
[36] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov,
“Enriching word vectors with subword information,”
arXiv Preprint, arXiv:1607.04606, 2016.
[37] A. Herbelot and M. Baroni, “High-risk learning:
Acquiring new word vectors from tiny data,” arXiv Pre-
print, arXiv:1707.06556, 2017.
[38] Y. Pinter, R. Guthrie, and J. Eisenstein, “Mimicking
word embeddings using subword rnns,” arXiv Preprint,
arXiv:1707.06961, 2017.
[39] L. Lucy and J. Gauthier, “Are distributional repre-
sentations ready for the real world? Evaluating word vec-
tors for grounded perceptual meaning,” arXiv Preprint,
arXiv:1705.11168, 2017.
[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“Imagenet classif ication with deep convolutional neural
networks,” in Proc. Advances Neural Information Processing
Systems, 2012, pp. 1097–1105.
[41] A. Sharif Razavian, H. Azizpour, J. Sullivan, and
S. Carlsson, “CNN features off-the-shelf: An astound-
ing baseline for recognition,” in Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition Workshops, 2014, pp.
806–813.
[42] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J.
Long, R. Girshick, S. Guadarrama, and T. Darrell,
“Caffe: Convolutional architecture for fast feature em-
bedding,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014,
pp. 675–678.
[43] N. Kalchbrenner, E. Grefenstette, and P. Blunsom,
“A convolutional neural network for modelling sentenc-
es,” in Proc. 52nd Annu. Meeting Association Computational
Linguistics, 2014, vol. 1, pp. 655–665.
[44] Y. Kim, “Convolutional neural networks for sen-
tence classif ication,” arXiv Preprint, arXiv:1408.5882,
2014.
[45] S. Poria, E. Cambria, and A. Gelbukh, “Aspect ex-
traction for opinion mining with a deep convolutional
neural network,” Knowl.-Based Syst., vol. 108, pp. 42–49,
June 2016.
[46] A. Kirillov, D. Schlesinger, W. Forkel, A. Zelenin,
S. Zheng, P. Torr, and C. Rother, “Efficient likelihood
learning of a generic CNN-CRF model for semantic
segmentation,” arXiv Preprint, arXiv:1511.05067, 2015.
[47] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and
K. J. Lang, “Phoneme recognition using time-delay neu-
ral networks,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 37, no. 3, pp. 328–339, Mar. 1989.
[48] A. Mukherjee and B. Liu, “Aspect extraction through
semi-supervised modeling,” in Proc. 50th Annu. Meeting
Association Computational Linguistics, 2012, pp. 339–348.
[49] S. Ruder, P. Ghaffari, and J. G. Breslin, “Insight-1
at semeval-2016 task 5: Deep learning for multilingual
aspect-based sentiment analysis,” arXiv Preprint, arX-
iv:1609.02748, 2016.
[50] P. Wang, J. Xu, B. Xu, C. Liu, H. Zhang, F. Wang,
and H. Hao, “Semantic clustering and convolutional
neural network for short text categorization,” in Proc.
Annu. Meeting Association Computational Linguistics, 2015,
pp. 352–357.
[51] S. Poria, E. Cambria, D. Hazarika, and P. Vij, “A
deeper look into sarcastic tweets using deep convolu-
tional neural networks,” in Proc. Int. Conf. Computational
Linguistics, 2016, pp. 1601–1612.
[52] M. Denil, A. Demiraj, N. Kalchbrenner, P. Blunsom,
and N. de Freitas, “Modelling, visualising and summaris-
ing documents with a single convolutional neural net-
work,” 26th Int. Conf. Computational Linguistics, 2014,
pp. 1601–1612.
[53] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional
neural network architectures for matching natural lan-
guage sentences,” in Proc. Advances Neural Information Pro-
cessing Systems, 2014, pp. 2042–2050.
[54] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil,
“A latent semantic model with convolutional-pooling
structure for information retrieval,” in Proc. 23rd ACM
Int. Conf. Information and Knowledge Management, 2014,
pp. 101–110.

[55] W. Yih, X. He, and C. Meek, “Semantic parsing
for single-relation question answering,” in Proc. Annu.
Meeting Association Computational Linguistics, 2014, pp.
643–648.
[56] L. Dong, F. Wei, M. Zhou, and K. Xu, “Question
answering over freebase with multi-column convolu-
tional neural networks,” in Proc. Annu. Meeting Association
Computational Linguistics, 2015, pp. 260–269.
[57] A. Severyn and A. Moschitti, “Modeling relational
information in question-answer pairs with convolutional
neural networks,” arXiv Preprint, arXiv:1604.01178,
2016.
[58] Y. Chen, L. Xu, K. Liu, D. Zeng, and J. Zhao, “Event
extraction via dynamic multi-pooling convolutional
neural networks,” in Proc. Annu. Meeting Association Com-
putational Linguistics, 2015, pp. 167–176.
[59] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L.
Deng, G. Penn, and D. Yu, “Convolutional neural
networks for speech recognition,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 22, no. 10, pp. 1533–1545,
Oct. 2014.
[60] D. Palaz, M. Magimai.-Doss, and R. Collobert,
“Analysis of CNN-based speech recognition system us-
ing raw speech as input,” Idiap, Tech. Rep, 2015.
[61] Z. Tu, B. Hu, Z. Lu, and H. Li, “Context-dependent
translation selection using convolutional neural net-
work,” arXiv Preprint, arXiv:1503.02357, 2015.
[62] J. L. Elman, “Finding structure in time,” Cogn. Sci.,
vol. 14, no. 2, pp. 179–211, 1990.
[63] T. Mikolov, S. Kombrink, L. Burget, J. Č ernocký,
and S. Khudanpur, “Extensions of recurrent neural net-
work language model,” in Proc. Int. Conf. Acoustics, Speech
and Signal Processing, 2011, pp. 5528–5531.
[64] I. Sutskever, J. Martens, and G. E. Hinton, “Gener-
ating text with recurrent neural networks,” in Proc. 28th
Int. Conf. Machine Learning, 2011, pp. 1017–1024.
[65] S. Liu, N. Yang, M. Li, and M. Zhou, “A recursive
recurrent neural network for statistical machine transla-
tion,” in Proc. 52nd Annu. Meeting Association Computa-
tional Linguistics, 2014, pp. 1491–1500.
[66] M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint
language and translation modeling with recurrent neural
networks,” in Proc. Conf. Empirical Methods Natural Lan-
guage Processing, 2013, pp. 1044–1054.
[67] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence
to sequence learning with neural networks,” in Proc.
Advances Neural Information Processing Systems, 2014, pp.
3104–3112.
[68] T. Robinson, M. Hochberg, and S. Renals, “The use
of recurrent neural networks in continuous speech recog-
nition,” in Proc. Automatic Speech and Speaker Recognition,
1996, pp. 233–258.
[69] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech
recognition with deep recurrent neural networks,” in
Proc. Int. Conf. Acoustics, Speech and Signal Processing, 2013,
pp. 6645–6649.
[70] A. Graves and N. Jaitly, “Towards end-to-end speech
recognition with recurrent neural networks,” in Proc. 31st
Int. Conf. Machine Learning, 2014, pp. 1764–1772.
[71] H. Sak, A. Senior, and F. Beaufays, “Long short-term
memory based recurrent neural network architectures for
large vocabulary speech recognition,” arXiv Preprint,
arXiv:1402.1128, 2014.
[72] A. Karpathy and L. Fei-Fei, “Deep visual-semantic
alignments for generating image descriptions,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2015,
pp. 3128–3137.
[73] D. Tang, B. Qin, and T. Liu, “Document modeling
with gated recurrent neural network for sentiment classi-
f ication,” in Proc. Conf. Empirical Methods Natural Language
Processing, 2015, pp. 1422–1432.
[74] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Em-
pirical evaluation of gated recurrent neural networks on
sequence modeling,” arXiv Preprint, arXiv:1412.3555,
2014.
[75] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio, “Learn-
ing phrase representations using RNN encoder-decoder
for statistical machine translation,” arXiv Preprint, arX-
iv:1406.1078, 2014.
[76] G. Chen, D. Ye, E. Cambria, J. Chen, and Z. Xing,
“Ensemble application of convolutional and recurrent

neural networks for multi-label text categorization,” in
Proc. Int. Joint Conf. Neural Networks, 2017, pp. 2377–2383.
[77] S. Poria, E. Cambria, D. Hazarika, N. Mazumder, A.
Zadeh, and L. Morency, “Context-dependent sentiment
analysis in user-generated videos,” in Proc. Annu. Meeting
Association Computational Linguistics, 2017, pp. 873–883.
[78] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L.
Morency, “Tensor fusion network for multimodal sen-
timent analysis,” in Proc. Conf. Empirical Methods Natural
Language Processing, 2017, pp. 1114–1125.
[79] E. Tong, A. Zadeh, C. Jones, and L.-P. Morency,
“Combating human traff icking with deep multimodal
models,” arXiv Preprint, arXiv:1705.02735, 2017.
[80] I. Chaturvedi, E. Ragusa, P. Gastaldo, R. Zunino,
and E. Cambria, “Bayesian network based extreme learn-
ing machine for subjectivity detection,” J. Franklin Inst.,
vol. 355, no. 4, pp. 1780–1797, July 2018.
[81] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier,
“Language modeling with gated convolutional net-
works,” arXiv Preprint, arXiv:1612.08083, 2016.
[82] W. Yin, K. Kann, M. Yu, and H. Schütze, “Com-
parative study of CNN and RNN for natural language
processing,” arXiv Preprint, arXiv:1702.01923, 2017.
[83] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780,
1997.
[84] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learn-
ing to forget: Continual prediction with LSTM,” in Proc.
9th Int. Conf. Artificial Neural Networks, pp. 850–855, 1999.
[85] G. Lample, M. Ballesteros, S. Subramanian, K.
Kawakami, and C. Dyer, “Neural architectures for named
entity recognition,” arXiv Preprint, arXiv:1603.01360,
2016.
[86] A. Graves, “Generating sequences with recurrent
neural networks,” arXiv Preprint, arXiv:1308.0850,
2013.
[87] M. Sundermeyer, H. Ney, and R. Schlüter, “From
feedforward to recurrent LSTM neural networks for lan-
guage modeling,” IEEE Trans. Audio, Speech, Language
Process., vol. 23, no. 3, pp. 517–529, Mar. 2015.
[88] M. Sundermeyer, T. Alkhouli, J. Wuebker, and H.
Ney, “Translation modeling with bidirectional recurrent
neural networks,” in Proc. Conf. Empirical Methods Natural
Language Processing, 2014, pp. 14–25.
[89] R. Lowe, N. Pow, I. Serban, and J. Pineau, “The
ubuntu dialogue corpus: A large dataset for research in
unstructured multi-turn dialogue systems,” arXiv Pre-
print, arXiv:1506.08909, 2015.
[90] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan,
“Show and tell: A neural image caption generator,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2015, pp. 3156–3164.
[91] O. Vinyals and Q. Le, “A neural conversational mod-
el,” arXiv Preprint arXiv:1506.05869, 2015.
[92] J. Li, M. Galley, C. Brockett, G. P. Spithourakis, J.
Gao, and B. Dolan, “A persona-based neural conversation
model,” arXiv Preprint, arXiv:1603.06155, 2016.
[93] M. Malinowski, M. Rohrbach, and M. Fritz, “Ask
your neurons: A neural-based approach to answering
questions about images,” in Proc. IEEE Int. Conf. Com-
puter Vision, 2015, pp. 1–9.
[94] D. Bahdanau, K. Cho, and Y. Bengio, “Neural ma-
chine translation by jointly learning to align and trans-
late,” arXiv Preprint, arXiv:1409.0473, 2014.
[95] A. M. Rush, S. Chopra, and J. Weston, “A neural
attention model for abstractive sentence summarization,”
arXiv Preprint, arXiv:1509.00685, 2015.
[96] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R.
Salakhudinov, R. Zemel, and Y. Bengio, “Show, attend
and tell: Neural image caption generation with visual at-
tention,” in Proc. Int. Conf. Machine Learning, 2015, pp.
2048–2057.
[97] O. Vinyals, Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever,
and G. Hinton, “Grammar as a foreign language,” in
Proc. Advances Neural Information Processing Systems, 2015,
pp. 2773–2781.
[98] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer
networks,” in Proc. Advances Neural Information Processing
Systems, 2015, pp. 2692–2700.
[99] R. Paulus, C. Xiong, and R. Socher, “A deep rein-
forced model for abstractive summarization,” arXiv Pre-
print, arXiv:1705.04304, 2017.

august 2018 | IEEE Computational intelligence magazine 75

[100] Y. Wang, M. Huang, X. Zhu, and L. Zhao, “At-
tention-based LSTM for aspect-level sentiment classif ica-
tion,” in Proc. Conf. Empirical Methods Natural Language
Processing, 2016, pp. 606–615.
[101] Y. Ma, H. Peng, and E. Cambria, “Targeted aspect-
based sentiment analysis via embedding commonsense
knowledge into an attentive LSTM,” in Proc. Association
Advancement Artificial Intelligence Conf., 2018, pp. 5876–
5883.
[102] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng,
“Semantic compositionality through recursive matrix-
vector spaces,” in Proc. Joint Conf. Empirical Methods Natu-
ral Language Processing and Computational Natural Language
Learning, 2012, pp. 1201–1211.
[103] B. Taskar, C. Guestrin, and D. Koller, “Max-mar-
gin Markov networks,” in Proc. Advances Neural Informa-
tion Processing Systems, 2004, pp. 25–32.
[104] S. R. Bowman, C. Potts, and C. D. Manning,
“Recursive neural networks can learn logical semantics,”
arXiv Preprint, arXiv:1406.1827, 2014.
[105] K. S. Tai, R. Socher, and C. D. Manning, “Im-
proved semantic representations from tree-structured
long short-term memory networks,” arXiv Preprint,
arXiv:1503.00075, 2015.
[106] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer,
“Scheduled sampling for sequence prediction with recur-
rent neural networks,” in Proc. Advances Neural Information
Processing Systems, 2015, pp. 1171–1179.
[107] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba,
“Sequence level training with recurrent neural net-
works,” arXiv Preprint, arXiv:1511.06732, 2015.
[108] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and
D. Jurafsky, “Deep reinforcement learning for dialogue
generation,” arXiv Preprint, arXiv:1606.01541, 2016.
[109] R. J. Williams, “Simple statistical gradient-follow-
ing algorithms for connectionist reinforcement learning,”
Mach. Learn., vol. 8, no. 3–4, pp. 229–256, 1992.
[110] S. Young, M. Gašič, S. Keizer, F. Mairesse, J.
Schatzmann, B. Thomson, and K. Yu, “The hidden in-
formation state model: A practical framework for POM-
DP-based spoken dialogue management,” Comput. Speech
Lang., vol. 24, no. 2, pp. 150–174, June 2010.
[111] S. Young, M. Gašič, B. Thomson, and J. D. Wil-
liams, “POMDP-based statistical spoken dialog systems:
A review,” Proc. IEEE, vol. 101, no. 5, pp. 1160–1179,
2013.
[112] P.-h. Su, V. David, D. Kim, T.-h. Wen, and S.
Young, “Learning from real users: Rating dialogue suc-
cess with neural networks for reinforcement learning in
spoken dialogue systems,” in Proc. Interspeech Conf., 2015,
pp. 2007–2011.
[113] P.-H. Su, M. Gasic, N. Mrksic, L. Rojas-Barahona,
S. Ultes, D. Vandyke, T. Wen, and S. Young, “On-line
active reward learning for policy optimisation in spoken
dialogue systems,” arXiv Preprint, arXiv:1605.07669,
2016.
[114] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” in Proc. Advances Neural In-
formation Processing Systems, 2014, pp. 2672–2680.
[115] J. Li, W. Monroe, T. Shi, A. Ritter, and D. Jurafsky,
“Adversarial learning for neural dialogue generation,”
arXiv Preprint, arXiv:1701.06547, 2017.
[116] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel,
R. Urtasun, A. Torralba, and S. Fidler, “Skip-thought
vectors,” in Proc. Advances Neural Information Processing
Systems, 2015, pp. 3294–3302.
[117] A. M. Dai and Q. V. Le, “Semi-supervised sequence
learning,” in Proc. Advances Neural Information Processing
Systems, 2015, pp. 3079–3087.
[118] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
“Learning internal representations by error propagation,”
DTIC Document, Tech. Rep, 1985.
[119] D. P. Kingma and M. Welling, “Auto-encoding
variational bayes,” arXiv Preprint, arXiv:1312.6114,
2013.
[120] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R.
Jozefowicz, and S. Bengio, “Generating sentences from a
continuous space,” arXiv Preprint, arXiv:1511.06349, 2015.
[121] Y. Zhang, Z. Gan, and L. Carin, “Generating text
via adversarial training,” in Proc. Neural Information Pro-
cessing Systems Workshop Adversarial Training, 2016.

[122] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E.
P. Xing, “Controllable text generation,” arXiv Preprint,
arXiv:1703.00955, 2017.
[123] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: se-
quence generative adversarial nets with policy gradient,”
in Proc. Association Advancement Artificial Intelligence Conf.,
2017, pp. 2852–2858.
[124] S. Rajeswar, S. Subramanian, F. Dutil, C. Pal, and
A. Courville, “Adversarial generation of natural lan-
guage,” arXiv Preprint, arXiv:1705.10929, 2017.
[125] J. Giménez and L. Marquez, “Fast and accurate
part-of-speech tagging: The SVM approach revisited,”
Recent Adv. Natural Lang. Process., pp. 153–162, 2004.
[126] Z. Huang, W. Xu, and K. Yu, “Bidirectional
LSTM-CRF models for sequence tagging,” arXiv Pre-
print, arXiv:1508.01991, 2015.
[127] D. Andor, C. Alberti, D. Weiss, A. Severyn, A.
Presta, K. Ganchev, S. Petrov, and M. Collins, “Glob-
ally normalized transition-based neural networks,” arXiv
Preprint, arXiv:1603.06042, 2016.
[128] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Brad-
bury, I. Gulrajani, V. Zhong, R. Paulus, and R. Socher,
“Ask me anything: Dynamic memory networks for natu-
ral language processing,” in Proc. Int. Conf. Machine Learn-
ing, 2016, pp. 1378–1387.
[129] D. Chen and C. D. Manning, “A fast and accurate
dependency parser using neural networks,” in Proc. Conf.
Empirical Methods Natural Language Processing, 2014, pp.
740–750.
[130] D. Weiss, C. Alberti, M. Collins, and S. Petrov,
“Structured training for neural network transition-based
parsing,” arXiv Preprint, arXiv:1506.06158, 2015.
[131] C. Dyer, M. Ballesteros, W. Ling, A. Matthews,
and N. A. Smith, “Transition-based dependency pars-
ing with stack long short-term memory,” arXiv Preprint,
arXiv:1505.08075, 2015.
[132] H. Zhou, Y. Zhang, C. Cheng, S. Huang, X. Dai,
and J. Chen, “A neural probabilistic structured-predic-
tion method for transition-based natural language pro-
cessing,” J. Artif. Intell. Res., vol. 58, pp. 703–729, Mar.
2017.
[133] S. Petrov, L. Barrett, R. Thibaux, and D. Klein,
“Learning accurate, compact, and interpretable tree an-
notation,” in Proc. 21st Int. Conf. Computational Linguistics,
2006, pp. 433–440.
[134] M. Zhu, Y. Zhang, W. Chen, M. Zhang, and J.
Zhu, “Fast and accurate shift-reduce constituent pars-
ing,” in Proc. Annu. Meeting Association Computational Lin-
guistics, 2013, pp. 434–443.
[135] J. Weston, S. Chopra, and A. Bordes, “Memory net-
works,” arXiv Preprint, arXiv:1410.3916, 2014.
[136] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus,
“End-to-end memory networks,” in Proc. Advances Neural
Information Processing Systems, 2015, pp. 2440–2448.
[137] C. Xiong, S. Merity, and R. Socher, “Dynamic
memory networks for visual and textual question an-
swering,” in Proc. Int. Conf. Machine Learning, 2016, pp.
2397–2406.
[138] A. Passos, V. Kumar, and A. McCallum, “Lexicon
infused phrase embeddings for named entity resolution,”
arXiv Preprint, arXiv:1404.5367, 2014.
[139] J. P. Chiu and E. Nichols, “Named entity recogni-
tion with bidirectional LSTM-CNNs,” arXiv Preprint,
arXiv:1511.08308, 2015.
[140] G. Luo, X. Huang, C. Lin, and Z. Nie, “Joint
named entity recognition and disambiguation,” in Proc.
Conf. Empirical Methods Natural Language Processing, 2015,
pp. 879–880.
[141] E. Strubell, P. Verga, D. Belanger, and A. McCal-
lum, “Fast and accurate sequence labeling with iterated
dilated convolutions,” arXiv Preprint, arXiv:1702.02098,
2017.
[142] O. Täckström, K. Ganchev, and D. Das, “Efficient
inference and structured learning for semantic role label-
ing,” Trans. Assoc. Comput. Linguistics, vol. 3, pp. 29–41,
Jan. 2015.
[143] J. Zhou and W. Xu, “End-to-end learning of se-
mantic role labeling using recurrent neural networks,” in
Proc. Annu. Meeting Association Computational Linguistics,
2015, pp. 1127–1137.
[144] L. He, K. Lee, M. Lewis, and L. Zettlemoyer,
“Deep semantic role labeling: What works and what’s

next,” in Proc. Annu. Meeting Association for Computational
Linguistics, 2017, pp. 473–483.
[145] Q. Le and T. Mikolov, “Distributed representations
of sentences and documents,” in Proc. 31st Int. Conf. Ma-
chine Learning, 2014, pp. 1188–1196.
[146] L. Yu, J. Wang, K. R. Lai, and X. Zhang, “Re-
fining word embeddings for sentiment analysis,” in Proc.
Conf. Empirical Methods Natural Language Processing, 2017,
pp. 545–550.
[147] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. No-
rouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K.
Macherey, et al., “Google’s neural machine translation
system: Bridging the gap between human and machine
translation,” arXiv Preprint, arXiv:1609.08144, 2016.
[148] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y.
N. Dauphin, “Convolutional sequence to sequence learn-
ing,” arXiv Preprint, arXiv:1705.03122, 2017.
[149] A. Vaswani, N. Shazeer, N. Parmar, and J. Uszko-
reit, “Attention is all you need,” arXiv Preprint, arX-
iv:1706.03762, 2017.
[150] R. K. Srivastava, K. Greff, and J. Schmidhuber,
“Training very deep networks,”in Proc. Advances Neural
Information Processing Systems, 2015, pp. 2377–2385.
[151] B. Pang and L. Lee, “Seeing stars: Exploiting class
relationships for sentiment categorization with respect to
rating scales,” in Proc. 43rd Annu. Meeting Association Com-
putational Linguistics, 2005, pp. 115–124.
[152] A. Zadeh, R. Zellers, E. Pincus, and L. Morency,
“Multimodal sentiment intensity analysis in videos: Fa-
cial gestures and verbal messages,” IEEE Intell. Syst., vol.
31, no. 6, pp. 82–88, Nov. 2016.
[153] A. Fader, L. S. Zettlemoyer, and O. Etzioni, “Para-
phrase-driven learning for open question answering,” in
Proc. Annu. Meeting Association Computational Linguistics,
2013, pp. 1608–1618.
[154] A. Bordes, J. Weston, and N. Usunier, “Open
question answering with weakly supervised embedding
models,” in Proc. Joint European Conf. Machine Learning and
Knowledge Discovery Databases, 2014, pp. 165–180.
[155] A. Ritter, C. Cherry, and W. B. Dolan, “Data-driv-
en response generation in social media,” in Proc. Conf.
Empirical Methods Natural Language Processing, 2011, pp.
583–593.
[156] A. Sordoni, M. Galley, M. Auli, C. Brockett,
Y. Ji, M. Mitchell, J.-Y. Nie, J. Gao, and B. Dolan, “A
neural network approach to context-sensitive genera-
tion of conversational responses,” arXiv Preprint, arX-
iv:1506.06714, 2015.
[157] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan,
“A diversity-promoting objective function for neural
conversation models,” arXiv Preprint, arXiv:1510.03055,
2015.
[158] J. Dodge, A. Gane, X. Zhang, A. Bordes, S. Cho-
pra, A. Miller, A. Szlam, and J. Weston, “Evaluating
prerequisite qualities for learning end-to-end dialog sys-
tems,” arXiv Preprint, arXiv:1511.06931, 2015.
[159] X. Zhou, D. Dong, H. Wu, S. Zhao, D. Yu, H.
Tian, X. Liu, and R. Yan, “Multi-view response selec-
tion for human-computer conversation,” in Proc. Conf.
Empirical Methods Natural Language Processing, 2016, pp.
372–381.
[160] P. Koehn, F. J. Och, and D. Marcu, “Statistical
phrase-based translation,” in Proc. Conf. North American
Chapter Association Computational Linguistics, 2003, pp.
48–54.
[161] K. Papineni, S. Roukos, T. Ward, and W. Zhu,
“Bleu: A method for automatic evaluation of machine
translation,” in Proc. 40th Annu. Meeting Association Com-
putational Linguistics, 2002, pp. 311–318.
[162] I. V. Serban, A. Sordoni, Y. Bengio, A. C. Cour-
ville, and J. Pineau, “Building end-to-end dialogue sys-
tems using generative hierarchical neural network mod-
els,” in Proc. Association Advancement Artificial Intelligence
Conf., 2016, pp. 3776–3784.
[163] Y. LeCun, Y. Bengio, and G. Hinton, “Deep
learning,” Nature, vol. 521, no. 7553, pp. 436–444, May
2015.
[164] T. Baltrušaitis, C. Ahuja, and L. Morency, “Multi-
modal machine learning: A survey and taxonomy,” arXiv
Preprint, arXiv:1705.09406, 2017.

�

