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AutoML-Emo: Automatic
Knowledge Selection using Congruent Effect
for Emotion Identification in Conversations

Dazhi Jiang, Runguo Wei, Jintao Wen, Geng Tu, and Erik Cambria

Abstract—Emotion recognition in conversations (ERC) has wide applications in medical care, human-computer interaction, and other
fields. Unlike the general task of emotion analysis, humans usually rely on context and commonsense knowledge to convey emotions
in conversations. Only when the model can connect and fully utilize a large-scale commonsense knowledge base, it can better
understand latent contents in conversations. Unfortunately, there is no available knowledge selection mechanism to address such
knowledge needs and to make sure the system is not flooded with irrelevant commonsense knowledge. Therefore, we propose an
AutoML strategy based on emotion congruent effect to select suitable knowledge and models, called AutoML-Emo. Global exploration
and local exploitation-based selection mechanism (G&LESM) are used for automatic knowledge selection. The transformer-based
architecture search (TAS) is applied to model selection, the selected transformer-based model is employed to incorporate knowledge
and capture context information in conversations. The experimental results show that AutoML-Emo can effectively enhance external
knowledge in different sizes and domain datasets. Moreover, the selected transformer-based model derived from TAS is superior to the
most advanced models.

Index Terms—Autonomous machine learning, Genetic algorithm, Knowledge selection, Emotion recognition.

F

1 INTRODUCTION

EMOTIONAL recognition in conversations (ERC) received
widespread attention from researchers [1], [2], [3] re-

cently. When people talk to each other, humans make com-
monsense inferences to determine their understanding of
the narrative being presented [4]. In addition, humans often
rely on context and commonsense knowledge to convey
emotions [5], which makes the machine hard to recognize
and understand the emotions of utterances unless it can
connect and fully utilize the huge knowledge base [6].
Therefore, knowledge selection has meaningful implications
for ERC. In recent work, Poria et al. [7] used a recurrent
neural network (RNN) to model contextual utterances in
order of time, in which each utterance is represented by
a feature vector. Majumder et al. [8] combined the atten-
tion mechanism to gather the information of each target
utterance. Hazarika et al. [9] proposed a memory network
to model context. However, these methods only focus on
context and do not utilize external commonsense knowl-
edge to recognize and understand emotions. Incorporating
commonsense knowledge from the external knowledge base
is the basis for understanding the content of conversations
and making empathic responses [10], [11].
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Therefore, Zhong et al. [5] applied a knowledge-enriched
transformer (KET) to enrich the semantics of utterances by
referring to knowledge entities from external knowledge
bases. Zhou et al. [12] employed a graph convolutional
network to learn the representation of relevant knowledge.
In addition, Ghosal et al. [6] proposed a new framework,
called COSMIC, for incorporating different commonsense
elements such as events, mental state, and so on. Obviously,
these models do not have an available knowledge selection
mechanism. External knowledge not only enhances the text
semantics but also brings a lot of noise to data, especially
when the size of data is large. If we search for the best
combination of knowledge manually, it will greatly increase
the cost of the experiment. In addition, the huge knowl-
edge shows the complexity of the knowledge selection task.
Fig. 1 shows an example in conversations, which illustrates
the importance of knowledge selection in recognizing and
understanding the emotions of utterances.

In other words, incorporating commonsense knowledge
is becoming increasingly popular in ERC [13], [14], but it
also brings in a lot of noise to data. AutoML is a strategy
that automatically searches for a suitable combination of
parameters, algorithms, and so on [15], [16]. Inspired by
such methods, an automatic knowledge selection mecha-
nism is composed of AutoML and commonsense knowledge
selection has become a topic worth exploring. This ERC task
and its extensive experiment can be better handled by the
method based on AutoML strategy [17]. Consequently, we
propose an AutoML strategy called AutoML-Emo, which
can search automatically for the suitable commonsense
knowledge combination in the massive external knowledge
base and the appropriate transformer-based model derived
from transformer-based architecture search (TAS).



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 14, NO. 3, JULY-SEPTEMBER 2023 1846

Un, well…Joey and I broke up

Oh my God, wh-what happened?

… he kept laughing at homo erectus!

I knew that was him!
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Fig. 1. A example of a conversation. (Legend: TF stands for the transformer-based model. Additionally, we can find that "him" and "it" in the fourth
and fifth utterance are related to "Joey" and "break up" in the first utterance due to referring to the contextual information. The "laughing" in the third
utterance is enriched by referring to the external knowledge base. Especially, the different color stands for different sentiment such as red blue and
gray represents positive neutral and negative, respectively. The depth of the color denotes emotional intensity.)

The transformer-based model [18] has been shown to
be a powerful representation learning model in many NLP
tasks, such as machine translation[18] and ERC [5]. Exper-
imentally, it was found that changes in parameters have
a significant impact on performance due to the lack of an
automatic learning process for the transformer-based model
parameters. Specifically, the AutoML-Emo framework is
essentially a process of knowledge selection, which can be
divided into the following two parts: global exploration and
local exploitation-based selection mechanism (G&LESM).
The global exploration selection mechanism (GESM) is a
knowledge selection mechanism based on emotion congru-
ent effect [19], which is used to quickly and globally select
appropriate knowledge from unknown massive knowledge,
thus reducing the scale of knowledge. In fact, the recalled
information may be affected by the change of emotions,
which is called the emotion congruent effect. GESM is a
selection algorithm based on grid search, which means
that it sacrifices a certain precision to improve search effi-
ciency. And its selection strategy is in line with the emotion
congruent effect, which offers a realistic basis and certain
interpretability. As a result, GESM will not only consider
the relationship between commonsense knowledge and cor-
responding words but also focus on selecting commonsense
knowledge consistent with the sentiments of words. Addi-
tionally, sentimental intensity is used to depict the degree of
sentimental consistency.

The local exploration selection mechanism (LESM) is a
selection mechanism based on the genetic algorithm [20],
which is applied to accurately and locally select the knowl-
edge gained by GESM, thus improving the quality of intro-
duced knowledge. Especially, when positive words appear
in a negative context, GESM has obvious limitations, while
LESM only selects knowledge based on fitness function
(the validation loss), which can make up for the deficiency
of GESM. Inspired by the emotion congruent effect, the
selection of knowledge has new theoretical guidance, and
the selected knowledge will be given more interpretability.
The TAS allows the selected model to be better adapted to
the selected knowledge entities, through referring to these
selected knowledge entities, the selected transformer model
derived from TAS is superior to most advanced models.

From the view of experimental results, the selected
knowledge can help the selected model better adapt to
different sizes and domain datasets. The main contributions
of this paper are summarized as follows:

1) We propose a GESM based on emotion congruent
effect, which can quickly and globally select the
unknown huge knowledge, so as to reduce the size
of commonsense knowledge and pave the way for
further selection. And it will tend to search the
knowledge entitled consistent with the sentiments
of words, in which the sentimental intensity is used
for describing the degree of emotional congruence.

2) We propose a LESM based on a genetic algorithm,
which can accurately and locally select the knowl-
edge obtained by GESM, so as to effectively improve
the quality of external knowledge. In particular, it
can make up for the deficiency of GESM, that is, the
limitation of positive words in a negative context
when selecting knowledge.

3) We conduct a lot of experiments and find that using
AutoML-Emo to select commonsense knowledge is
helpful to ERC. In addition, on the different sizes
and domain datasets, the knowledge we selected
makes the performance of the transformer-based
model derived from TAS better than the most ad-
vanced model.

The rest of this paper is organized as follows: Section 2
illustrates related work; Section 3 introduces AutoML-Emo;
Section 4 and 5 list the extensive experiments and analy-
sis conducted to show the effectiveness of our proposed
method; finally, Section 6 offers to conclusion and future
directions.

2 RELATED WORK

Emotion analysis around conversations is an important
topic in recent years, which has attracted much attention
in natural language processing. The availability of many
conversation datasets [21], [22], [23] partly explain this phe-
nomenon, and the growing interest in conversation systems
can also explain this phenomenon [24], [25].
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Emotion recognition in conversations: Early research in
ERC mainly employed vocabulary-based methods [26], [27],
[28]. In recent years, researchers in ERC began to adopt
deep learning technology [29], [30], [31], [32], [33]. For
example, Poria et al. [34] proposed a contextual long-short
term memory to capture the context information. Hazarika
et al. [9] proposed a gated recurrent unit (GRU) based on a
conversational memory network (CMN), which builds dif-
ferent contextual models for the speakers and the listeners.
Additionally, a DialogueRNN model was proposed in [8],
which used three GRUs to model the emotional states, the
context, and the speaker states. Ghosal et al. [35] proposed
a method based on a graph neural network, which uses the
dependency relationship between the different speakers to
model the context.

External knowledge in conversations: Commonsense
knowledge is the foundation for understanding conver-
sations and generating appropriate responses, which can
lead to explainable dialogue understanding [5], [6]. External
commonsense knowledge is a collection of commonsense
knowledge [10]. In textual conversations, there is a lot of
knowledge that is obvious to humans but difficult to be
recognized by models. For example, speaker A: "I like dogs
best, and you?", speaker B: "I like Collie best.". It is difficult
for a machine to conclude that "Collie" is a "dog" from the
contextual utterances unless a connection is established be-
tween "Collie" and "dog". To address this problem, we have
to incorporate knowledge from external large-scale knowl-
edge bases, such as ConceptNet [36] and SenticNet [37].
Young et al. [38] proposed the first end-to-end dialogue
system augmented with commonsense knowledge. Zhong
et al. [5] proposed a knowledge-enriched transformer, which
uses context-aware graph attention to embed commonsense
knowledge. Zhang et al. [39] introduced a dual-level graph
attention to fuse external knowledge for enhancing the
semantics of target utterances. Ghosal et al. [6] proposed
a new framework, called COSMIC, which incorporates
commonsense elements and uses it as the basis to learn
the dependency between interlocutors. In addition, external
commonsense knowledge is a collection of commonsense
knowledge [10].

AutoML in emotion analysis: Autonomous machine learn-
ing (AutoML) [15] focuses on developing an effective
method for automatically designing machine learning work-
flow, which does not require a lot of human interven-
tion [40]. Recently, there are some researchers have begun to
employ AutoML for emotion analysis. For example, Lopes
et al. [41] proposed a fusion classification method based
on AutoML, which combines text and image sentiment
analysis and finds the best model through a random search
strategy. AL-Sharuee et al. [42] introduced an automatic
and unsupervised sentiment analysis method to analyze
comment sentiment. Chen et al. [43] introduced a new
lifelong learning emotion classification method, which uses
a Bayesian optimization framework based on random gra-
dient descent. Unfortunately, there is no work related to
AutoML in ERC, let alone the combination of AutoML and
external knowledge in conversations.

3 METHODOLOGY

In this section, we propose an AutoML strategy based
on emotion congruent effect, which is used to select suit-
able knowledge and transformer-based model. It consists
of three parts shown in Fig. 2: GESM, LESM, and TAS.
After GESM based on congruent effect, the scale of external
knowledge related to "laughing" is reduced because the
negative and neutral knowledge is deleted when facing a
negative context. However, LESM makes up for the defects
of GESM by further reducing the positive knowledge ac-
cording to the fitness function. In the process of TAS, we
use the internal parameter spaces in the transformer-based
model as the search space.

3.1 Task Definition
Let the hyperparameter spaces related to the knowledge
selection and the transformer-based architecture search
be Λ= {Λ1, ...,Λn} and Λ̄= {Λ̄1, ..., Λ̄n}, respectively. Let
{uj , c(i)j , yj} ∈ {U,C, Y } denotes the tuple of utterance,
knowledge, label, where j = 1, ..., N represents number of
utterances, c(i)j stands for the ith commonsense knowledge
in the jth utterance, and yj is the emotional label of jth
utterance (see Fig. 2). Additionally, U , C , and Y represent
all utterances and the set of their corresponding knowledge
and emotion labels. Thus, the knowledge selection problem
can be written as:

θ∗ = argmin
θ∈Λ

(u
train/valid

,c
train/valid

)∼(U,C)L ∗(Λ,

(utrain, ctrain), (uvalid, cvalid), λ
∗)

(1)

where λ ∈ Λ̄ denotes the hyperparameter spaces related
to model M, and λ∗ represents a given combination of
hyperparameters. In knowledge selection, the model M∗
used to evaluate performance is not in the scope of TAS.
Thus, by default, model M∗ is initialized with the given
λ∗. The L ∗(Λ, (utrain, ctrain), (uvalid, cvalid), λ

∗) is the loss
function when model M∗ is trained on (utrain, ctrain) and
evaluated on (uvalid, cvalid). In addition, the transformer-
based architecture search problem can be written as:

λ∗∗ = argmin
λ∈Λ̄

MLL(θ∗, (utrain, ctrain), (uvalid, cvalid), λ) (2)

where θ∗ ∈ Λ is the combination of hyperparame-
ters from G&LESM, and λ∗∗ is the suitable hyper-
parameters combination of model M from TAS. The
L(θ∗, (utrain, ctrain), (uvalid, cvalid), λ) is the loss function
of modelM. Additionally, in modelM, we limit the size of
context windows to M, thus reducing the calculation cost
in the evaluation process. Discarding the early contextual
utterances may lead to a negative impact, but it is negligible
because they only contribute the least information [44].

3.2 Global exploration-based selection mechanism
(GESM)
Incorporating external knowledge can enhance the seman-
tics of utterances but while playing a positive role, they also
bring a lot of noise to data, so an effective knowledge selec-
tion way is quite urgent. However, in the face of such vast
and complex knowledge, an accurate knowledge selection
strategy will bring huge experiment costs, and the results
searched are easy to fall into local optima.
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Fig. 2. The overall architecture of AutoML-Emo framework. (Legend: Where c(i)j stands for the ith commonsense knowledge in the jth utterance, and
yj is the emotional label of jth utterance. In the hyperparametric of Transformer-based architecture, X(k) is the representation of the kth utterance

u(k) concatenated with the corresponding knowledge.
_

X
(k)

is the vector representation of X(k) processed by MSAT, and
_

X
′(k)

C represents the

context vector representation of
_

X
(k)

.
_

X
′(k)

represents the final vector representation of u(k) and corresponding commonsense knowledge, which
is as input to the subsequent fully connected network for emotion classification.)

Additionally, the process of selecting knowledge like vio-
lent search has no realistic basis, which lacks interpretability
is also a big problem. In order to solve these problems,
a fast, effective, low-cost automatic selection mechanism
GESM is introduced. Moreover, in the process of selecting
knowledge, the GESM not only reduces the scale of knowl-
edge, paves the way for local and more accurate search,
but also ensures that the selected knowledge will not lose
sentimental consistency with the target words.

CT =

|NT |∑
j = 1

WT
(j) · c(j)T (3)

where WT
(j) represents the weight of the jth knowledge c(j)T

associated with the target word T . NT is the total number
of knowledge. CT stands for the vector representation of
related knowledge, which is a common method to obtain
knowledge representation.

The goal of GESM is not to select an optimal way of
knowledge representation, but to quickly select WT suitable
for different sizes and domain data from a global perspec-
tive. The specific calculation process is as follows:

_

W
(j)

T =

{
ε→ 0, Sj ≥ Ω∗ andSenti(T ) 6= Senti(c

(j)
T )

W
(j)
T · Z(c

(j)
T ), Senti(T ) = Senti(c

(j)
T )

(4)
_

W
(j)

T = η ·W (j)
T + (1− η) ·

_

W
(j)

T (5)

Sj = R1/W
(j)
T , R ∼ U(0, 1) (6)

Z(c
(j)
T ) = (

∥∥∥V (c
(j)
T )− 0.5 + A(c

(j)
T ) / 2

∥∥∥
2
− α) / β (7)

where
_

WT

(j)

represents the weight between target word
T and corresponding knowledge, which is the result of
WT

(j) treated by GESM. Senti(·) is a sentiment recognition
method based on CoreNLP [45]. ε is a small number closing
to zero. Sj is a weighted random number. Because the initial
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weights of knowledge are different, the random number
generated by uniform distribution can not reflect the dif-
ference. Z(·) a method to measure sentimental intensity.
Additionally, V (·) and A(·) denote the value of knowledge
in the dimension of valence and arousal, in the valence-
arousal-dominance (VAD) emotion model [46]. Noticeably,
we use sentimental intensity to further depict the degree
of emotional consistency between target words and corre-
sponding knowledge. And Ω∗ ∈ Λ is the combination of
hyperparameters related to GESM. Its optimization process
can be written as:

Ω∗ = argmin
Ω∈Λ

MLL(Λ, (utrain,
_
c train), (uvalid,

_
c valid), λ

∗) (8)

where _
c train/valid represents the set of knowledge repre-

sentations corresponding to all target words, which can be
obtained according to weight vector

_

WT ∈ NT×NC . NT and
NC represent the total number of different target words and
corresponding knowledge, respectively. Ω indicates the pos-
sible value range of the hyperparameters in a grid search.
The goal of GESM is to find the best result in a given
range, which not only satisfies the emotional consistency
between the target word and the corresponding knowledge,
but also boosts the performance of the evaluation model.
The pseudocode for GESM is given in Algorithm 1.

Algorithm 1 Global exploration-based selection mechanism
1: initialize modelM∗L∗ ;H ← ∅ ;
2: initialize hyperparameter λ∗; Ω← {Ωns = Ω1 + (ns − 1) · d} ;
3: initialize variable `min ←∞ ;
4: for Ωk in hyperparameter space Ω do
5: compute new knowledge representation ĉtrain/valid .

equation (3)
6: evaluate modelM∗L∗ on (uvalid , ĉvalid )
7: record F1 score `k ofM∗L∗
8: if `k < `min then
9: H ← H∪ {(Ωk, `k, λ∗)}

10: repeat
11: updateM∗L∗ given H
12: until stopping criterion met
13: end if
14: end for
15: return Ω∗ from H with maximal `

3.3 Local exploitation-based selection mechanism
(LESM)

After GESM, the scale of external knowledge has been
greatly reduced, but the quality of knowledge has been
upgraded. However, the random selection of knowledge
only from the perspective of sentiment is not enough for
different sizes and domain datasets. What’s more, GESM is
just a search strategy, which sacrifices a certain precision for
search efficiency. Therefore, we propose a LESM to make
a further and more accurate selection on GESM results.
Unlike GESM, LESM applies fitness function (the validation
loss) as the selection basis to search the existing results
accurately. Although GESM can also play an active role in
the experimental results, GESM also has certain limitations
when positive words appear in a negative context. At this
time, LESM makes up for the shortcomings of GESM.

Algorithm 2 Local exploitation-based selection mechanism
Require:

1: Pc -the crossover Probability ;
2: Pm - the mutation Probability ;
3: D - the population size ;
4: G - the number of generations

Ensure:
5: v∗ - the optimal chromosomes ;
6: initialize variable ϕ← ∅
7: create initial population V . Algorithm 3
8: repeat
9: compute the fitness of each individual Fk in the

population
10: initialize empty population ϕ← ∅
11: repeat
12: {α, β} ← select operation to V according to F section 3.3
13: if random(0, 1) < Pc then
14: crossover operation to {α, β}
15: end if
16: if random(0, 1) < Pm then
17: mutation operation to {α, β}
18: end if
19: ϕ← ϕ ∪ {α, β}
20: until D offsprings were created
21: V ← ϕ
22: until reproductive generations over G
23: return v∗ from V with minimal fitness

The LESM is a search strategy based on a genetic algo-
rithm, and the pseudocode for LESM is given in Algorithm
2. The genetic algorithm (GA) is a random search algo-
rithm based on genetic mechanisms and natural selection. It
mainly consists of the following components: coding mech-
anism, fitness function, genetic operator (such as crossover
and mutation), and control parameters. Thus, the LESM can
be introduced as follow:
Coding mechanism and initialization population: When
GA is used to solve problems, the possible solution needs to
be coded as a chromosome, that is, an individual and several
individuals form an initial solution group. Therefore, we
regard all the non-zero values in

_

W ∈ NT×Nc as 1, and then
expand them into a binary vector v ∈ NV where NV is the
length of the chromosome. Finally, we generate the initial
individuals according to the weighted random method and
form the initial solution group V ∈ NG×NV The pseudocode
is given in Algorithm 3.

Algorithm 3 Creation of Initial Population
1: initialize variable V ← ∅
2: for each G ← {1, · · · , NG} do
3: S ← {1/S1, . . . , 1/SNV

} . equation (6)
4: τ ← 0; v ← {0} ∗NV
5: for ξ in S do
6: ψ ← (ξ − ξmin) / (ξmax − ξmin) max-min normalization
7: if ψ > 0 then vτ ← 1
8: end if
9: end for

10: V ← V ∪ {v}; v ← {0} ∗NV
11: end for
12: return V

Fitness function and termination condition: To make a
genetic algorithm measure the superiority of individuals in
the population, a fitness function must be defined. Here,
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similar to the GESM approach, by default, the loss func-
tion of transformer-based model M∗ is used as the fitness
function to evaluate the fitness of each chromosome in the
population. The specific calculation process of the loss is as
follows.

L(y,
_
y) =

∑
k

WF [−yk + log(
∑Ne

j=1
e
_
y k[j])]+λ ‖θ‖ (9)

where y and _
y respectively represent the true and predicted

emotional labels of each sentence u(k), on validation sets.
Ne indicates the total number of emotion categories. WF is
learnable parameters of the transformation. The λ is the L2
regularization term and θ is the set of WF and other learn-
able parameters of the transformation in transformer-based
modelM∗L∗ . In each iteration of GA, the individuals in the
current population are evaluated and ranked according to
the fitness function. Among them, individuals with lower
fitness will be more likely to survive into the next generation
or mating pool. When the number of generations reaches G.
The individual with the least-loss is selected and then the
algorithm is terminated.
Genetic operator and generation of new population: Af-
ter fitness evaluation, the algorithm uses genetic opera-
tors to create a new population. In this part, we mainly
introduce the crossover and mutation operators of LESM.
Crossover operation: the crossover operator in a genetic
algorithm combines two individuals to form the offspring of
the next generation. The two parent chromosomes needed
for crossover operation are the two individuals with the
least-loss selected according to the tournament algorithm.
Through crossover, the searchability of the genetic algorithm
is improved. In LESM, the crossover of two chromosomes is
realized by the XOR operation, as shown below.

CrossOverKids(I) = P1 ⊕ P2 (10)

where I is an index that runs from 1 to the number of
kids, and ⊕ is an XOR operator for binary operands. The P1

and P2 are the first and second parent, respectively, which
are needed by the crossover operator. Mutation operation:
mutation is the genetic interference of individuals in a pop-
ulation. Mutation ensures genetic diversity and search for
wider solution space. The LESM adopts uniform mutation,
that is, a genetic algorithm generates a random number set
of genome lengths from a uniform distribution. The value
of each random number is related to the position of each
gene on the chromosome. The chromosome is scanned from
left to right, and the value of µ(k) is compared with the
mutation probability Pm for each associated bit k. if the
µ(k) at position k is less than Pm, the gene (bit) at position
k is flipped. Otherwise, the gene at position k would not be
affected. New population: In this way, the genetic algorithm
has been evolving until the new population is filled. The
new population is filled by increasing the number of elite
kids, cross kids and mutant kids. Among them, elite kids are
the two least-loss chromosomes in the previous generation.
They can directly survive into the next generation or mating
pool without crossover and mutation.

3.4 Transformer-based architecture search (TAS)
In this section, our approach is similar to neural architecture
search (NAS) [47], but instead of the whole process of

building a machine learning workflow, we use the internal
parameter spaces in the transformer-based model as the
search space. Among them, the transformer-based model
shown in Fig. 2 is employed to incorporate knowledge and
capture context information in conversations. The specific
calculation process is as follows:

_

X
(k)

= PN(MSAT (X(k) = [u(k);
_
c

(k)
], X(k), X(k))) (11)

_

X
′(k)

= PN(MSAT (
_

X
(k)

,
_

X
′(k)

C ,
_

X
′(k)

C )) (12)

MSAT (Q,K, V ) = softmax(
QKT

√
ds

)V (13)

PN(x) = max(0, xW
(1)
P + b

(1)
P )W

(2)
P + b

(2)
P (14)

where X(k) is the representation of the kth utter-
ance u(k) concatenated with the corresponding knowledge.
PN(·) and MSAT (·) represent Position-wise feed-forward
networks (PN) and Multi-head self-attention mechanism

(MSAT), respectively.
_

X
(k)

is the vector representation of

X(k) processed by MSAT, and
_

X
′(k)

C represents the context

vector representation of
_

X
(k)

.
_

X
′(k)

C is the vector representa-

tion of
_

X
(k)

C processed by MSAT.
_

X
′(k)

represents the final
vector representation of u(k) and corresponding common-
sense knowledge, which is as input to the subsequent fully
connected network for emotion classification. W (1)

P , W (2)
P

are learnable parameters of the transformation. b(1)
P and b(2)

P
are bias values of PN. To find the optimal combination
of hyperparameters and algorithms, based on tune [48],
we automatically and randomly search a group of ma-
chine learning algorithms and their internal parameters [49].
Therefore, in this work, we randomly search the internal
parameter spaces containing the following: loss function,
learning rate, batch size, optimizer, the number of heads in
multi-head attention mechanism, the number of hidden lay-
ers in position-wise feed-forward networks, the size of word
embedding (d), the size of context windows (M). Finally,
the best combination of hyperparameters and algorithms
is selected to make the best performance of the model in
the validation set. Especially, we initialize the words and
knowledge in conversations by Glove embedding [50].

4 EXPERIMENT

In this section, we conduct experiments to verify the
effectiveness of automatic knowledge selection mecha-
nism AutoML-Emo, on MELD [21], DailyDialog [22] and
EmoryNLP [23] datasets.

4.1 Datasets

We test AutoML-Emo on three different conversational
datasets. DailyDialog: humans daily written communi-
cation. MELD and EmoryNLP: TV program scripts col-
lected from "Friends". However, the size and annotation of
EmoryNLP are different from MELD. The emotion labels
of EmoryNLP include neutral, sad, mad, scaled, powerful,
peaceful, and joyful. Additionally, in terms of evaluation
indicators, for DailyDialog, we use micro F1 according
to [51] because their labels are extremely unbalanced (the
percentage of the main categories in the test set is more
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TABLE 1
The splits and evaluation metrics used in different datasets.

Dataset
# Dialogue # Utterances

# Class # Metric
Train Val Test Train Val Test

MELD 1,039 114 280 9,989 1,109 2,610 7 Weighted Avg.F1
DailyDialog 11,118 1,000 1,000 87,832 7,912 7,863 7 Micro F1
EmoryNLP 659 89 79 7,551 954 984 7 Weighted Avg.F1

TABLE 2
The detailed hyperparameters setting of GESM.

Dataset # Ω∗ # α # β # η

MELD 0.1 0.06467 0.607468 0.5
DailyDialog 0.6 0.06467 0.607468 0.5
EmoryNLP 0.3 0.06467 0.607468 0.5

TABLE 3
The detailed hyperparameters setting of LESM. (Legend: elite kids are
the two least-loss chromosomes in the previous generation. They can

directly survive into the next generation or mating pool without
crossover and mutation.)

# Hyperparameter # Value
Population size 100
Fitness Function loss of transformer-based classifier

Number of generations 300
Crossover arithmetic crossover

Crossover Probability 0.8
Mutation uniform mutation

Mutation Probability 0.1
Selection scheme tournament of size 2

Number of elite kids 2

than 80%). For the other relatively balanced datasets, we use
weighted avg.f1 following [8]. The more information about
datasets is shown in Table 1 below.

4.2 Commonsense Knowledge

The external knowledge bases such as SenticNet and Con-
ceptNet are applied in this paper. Emotion dictionary
NRC_VAD [52] is the source of sentimental intensity in
our model. ConceptNet: a semantic network in which each
word and phrase are connected to each other by labeled
(representing the type of edge) and weighted (represent-
ing the credibility of edge). SenticNet: a knowledge base,
which provides a set of 200,000 natural language concepts
related to semantics, emotion and polarity. In particular,
emotion refers to the emotional value of the four emotional
dimensions (pleasant, attention, sensitivity, and aptitude)
in hourglass model [53] and the emotional polarity value
between -1 and +1 (where -1 is extremely negative and + 1
is extremely positive). NRC_VAD: an emotional dictionary,
which contains a list of english words and their scores, that
is, the scores of arousal, valence and dominance in the [0,1]
interval.

4.3 Baseline Methods
In this section, we introduce some baselines in ERC.
CLSTM [31]: a utterance-level bidirectional LSTM is used
to encode each sentence. CNN [54]: a single-layer CNN
with strong empirical performance. which is trained in the
context-free utterance level. BERT_BASE [55]: the basic
version of the latest model of emotion classification. It treats
each utterance and its context as a separate document and
limits the document length to the last 100 tags to allow a
larger batch size. Because of the memory limitation of GPU,
we don’t use the large version of Bert for the experiment.
DialogueRNN [8]: it models the emotional state, context,
and speaker state in conversations via three GRU networks.
Att-NDE [56]: it presents a new continuous-time attention
method for sequential learning which is tightly integrated
with NDE to construct an attentive continuous-time state
machine. Co-GAT [57]: it designs a co-interactive graph
attention network to model simultaneously incorporate con-
textual information and mutual interaction information.
HiTransformer [58]: it proposes a hierarchical transformer
framework with a lower-level transformer to model the
word-level input and an upper-level transformer to capture
the context of utterance-level embeddings. KET [5]: it uses
hierarchical self-attention and context-aware graph atten-
tion to incorporate external commonsense knowledge dy-
namically. AutoML-Emo (ours): a transformer-based model,
which can be used to capture the context and incorporate
commonsense knowledge. In addition, its external knowl-
edge can better adapt to different sizes and domain datasets,
after GESM and LESM.

4.4 Hyperparameter Settings
The setting of related hyperparameters and algorithms
involved in the process of knowledge selection and
transformer-based architecture search is introduced as
shown in Table 2-4.

5 RESULT AND ANALYSIS

5.1 Comparison with Baselines
In this section, we compare the transformer-based model
(ours) after knowledge selection and TAS, with the above
benchmark model. The baseline results are from the corre-
sponding paper, and all test sets and evaluation metrics are
the same. The results are shown in Table 5. Among them, the
performance of CLSTM in short conversation datasets (such
as DailyDialog) is slightly better than CNN. However, the
performance in long conversation datasets (such as MELD
and EmoryNLP) is obviously inferior to that of CNN.
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TABLE 4
The searched hyperparameters and algorithms via TAS. (Legend: "Default" represents the default parameters and algorithms combination in

G&LESM.)

# Hyperparameter # MELD # DailyDialog # EmoryNLP # Default
The size of context windows (M) 6 7 6 6
The size of Glove embedding (d) 200 300 300 100

The number of hidden layers of PN 100 200 200 100
The number of heads of MSAT 4 5 4 4

Optimizer RMSProp Adam Adam Adam
Batch size 64 16 12 64

Learning rate 1.00E+04 1.00E+04 1.00E+04 1.00E+04
Loss function Cross Entropy Cross Entropy Cross Entropy Cross Entropy
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Fig. 3. Analysis results of LESM in MELD DailyDialog and EmoryNLP datasets. (Legend: because we use the elite operator, the curve of fitness
will remain unchanged if the next generation is not as good as the current elite children.)
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Fig. 4. The weight matrices between the words "laugh", "happy", "sad" and their related concepts. Top: weight matrix of "laugh". Middle: weight
matrix of "happy". Bottom: weight matrix of "sad". (Legend: 1: the results of raw weight matrix. 2: the results after GESM w/o sentimental intensity.
3: the results after GESM. 4: the binarized results after LESM. 5: the results after LESM.)
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curve by interpolation technique)
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In addition, the performance of DialogueRNN with at-
tention mechanism in the long conversation dataset is still
inferior to CNN. This further verifies the limitation of only
using the RNNs model to capture context dependencies,
which is the reason why we use the transformer-based
model. Similarly, BERT_BASE and KET are also based on the
transformer, but different from ours, BERT_BASE uses a bi-
directional transformer to model context, which has a more
powerful representation ability. However, this also makes
the model parameters much more than other baselines
and our model, which is extremely unfriendly to devices
with limited computing power and memory. Att-NDE is
performed at all times over the hidden states for different
kinds of irregular time signals. The missing information
in sequence data due to sampling loss, especially in the
presence of long sequence, can be seamlessly compensated
and attended in learning representation. Co-GAT uses a
proposed co-interactive graph interaction layer where a
cross-utterances connection and a cross-tasks connection
are constructed and iteratively updated with each other,
achieving to consider the two types of information simul-
taneously. HiTransformer uses speaker embedding in the
model, which allows our model to capture the interaction
between speakers and better understand emotional dynam-
ics in dialog systems. Likewise, KET and HiTransformers are
also not perform commonsense selection, which limits its
ability to understand sentiment to some extent. As for KET,
it benefits from the embedding of external knowledge riched
semantics of utterances, so it performs best in all baseline
methods. Unfortunately, the KET lacks an effective knowl-
edge selection mechanism to select appropriate knowledge
to reduce the negative impact of irrelevant knowledge.
Additionally, the performance of KET can be improved
again after an effective knowledge selection, which illus-
trates the great scalability of our methods. In particular, our
TAS can search out the optimal combination of algorithms
and hyperparameters of the transformer-based model in
the internal parameter spaces, which can further improve
the performance of ours and make it better than the most
advanced model KET in datasets, on different sizes and
domain datasets.

5.2 Model Analysis

Analysis of GESM: the goal of GESM is to select suitable
knowledge from the unknown external knowledge bases
quickly and globally, so as to effectively reduce the scale
of commonsense knowledge and pave the way for further
selection. Although GESM is a rough search strategy based
on grid search, it benefits from the emotion congruent effect.
Thus, its selection strategy makes the selected knowledge
useful in most cases. In Fig. 5, we show the accuracy and F1
score of the evaluation model on validation datasets under
different Ω∗ conditions without considering the sentiment
intensity. Obviously, using sentiment intensity to measure
the degree of emotional consistency plays a positive role.
Additionally, the performance of the model is improved at
first and then decreased after reaching the extreme value
with the increase of the model. This is good proof of our
point of view, that is: not all commonsense knowledge is
very important, and the introduction of a large amount of

TABLE 5
Comparison against various baselines. (Legend: "Ours" represents a

transformer-based model after knowledge selection. "Ours + TAS"
represents a transformer-based model after knowledge selection and
TAS. "Ours + KET" represents the KET model processed by G&LESM

for knowledge selection and best values are highlighted in bold.)

Methods # MELD # DailyDialog # EmoryNLP
cLSTM 49.72 49.90 26.01
CNN 55.86 49.34 32.59

BERT_BASE 56.21 53.12 33.15
DialogueRNN 56.27 50.65 31.70

Co-GAT - 51.00 -
HiTransformer - - 33.04

KET 58.18 53.37 34.39
Att-NDE 56.50 - -

Transformer-based 54.75 51.44 31.60
Ours 55.34 53.24 34.31

Improvement ↑ 0.59% 1.80% 2.17%
Ours + TAS 56.89 54.20 35.37

Improvement ↑ 2.14% 2.76% 3.77%
Ours + KET 58.66 54.82 35.77

Improvement ↑ 0.48% 1.45% 1.38%

TABLE 6
The results of ablation study. (Legend: "EI" represents sentimental

intensity.)

Methods # MELD # DailyDialog # EmoryNLP
Ours 55.34 53.24 34.31

Ours + TAS 56.89 54.20 35.37
Ours (w/o LESM) 55.05 53.10 33.15

Ours (w/o LESM & EI) 54.93 52.31 32.42
Ours (w/o GESM & LESM) 54.75 51.44 31.60

irrelevant knowledge is bound to bring a lot of noise to data.
This does not mean that the scale of knowledge should be
small enough, because only a small amount of knowledge
is used to enrich the semantics of the text, and the benefits
are negligible. Noticeably, GESM leverages the relationship
between the scale of knowledge and the performance of
models from the perspective of emotional congruence.
Analysis of LESM: the goal of LESM is to select more
suitable knowledge from the known knowledge accurately
and locally, so as to effectively improve the quality of
introduced knowledge and better adapt to the data of dif-
ferent sizes and domains. Unlike GESM, LESM is a search
strategy based on a genetic algorithm. It only uses the
fitness function (the validation loss) as the selection basis
to further search the existing results accurately. Therefore,
when searching the local known knowledge, it will not be
affected by emotion, which makes up for the deficiency of
GESM to a certain extent, that is, the limitation of positive
words in a negative context. In Fig. 3, We show that with
the increase in the number of generations, the fitness of the
population decreases gradually. Obviously, it is necessary
to use a genetic algorithm to further select the results of
GESM. It is worth noting that the experimental cost of the
algorithm is expensive if the knowledge is directly selected
by LESM without GESM, and the search results are easy
to fall into local optima. Just because of the cooperation and
mutual promotion between LESM and GESM, our proposed
AutoML-Emo can effectively improve the quality of external
knowledge shown in Fig. 4.
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Analysis of TAS: the goal of the transformer-based model is
to incorporate knowledge and capture the context informa-
tion in conversations. The TAS is a strategy to automatically
search the optimal hyperparameters and algorithms combi-
nation in the internal parameters of the model randomly. It
finally selects the combination on the validation sets to make
the model perform best. If there is no TAS, the transformer-
based model is constructed directly by default, such as the
default transformer-based model in G & LESM. This can
not show the real performance of models and will have
a negative effect on the results and conclusions. However,
the experimental cost of manual parameter adjustment is
too high. Fortunately, this kind of extensive experiment can
be effectively addressed by TAS. As shown in Table 5, the
performance of the transformer-based model after TAS has
been significantly improved on different sizes and domain
datasets and is better than the most advanced model.

5.3 Ablation Study

In this section, we conducted ablation studies to analyze
the contribution of different structures in AutoML-Emo, as
shown in Table 6. Obviously, whether LESM, GESM, and
TAS, they can promote the performance of the transformer-
based model. However, as shown in Fig. 6, TAS has the
largest contribution to the MELD dataset, which benefits
from the optimal combination of hyperparameters and al-
gorithms based on AutoML strategy. In DailyDialog and
EmoryNLP, GESM has the greatest contribution, which
thanks to the inspiration of the emotion congruent effect
and the influence of emotional intensity. However, GESM
has not achieved satisfactory results in the MELD dataset.
One possible explanation is that there are a lot of satirical
elements on MELD, which are difficult to understand only
from the text. For example: "that’s great. I’m going to enjoy it
on the balcony. I can enjoy my scenery and my dessert at the
same time". From the appearance, it shows that the speaker
is very satisfied with his dessert and hopes to improve the
experience by enjoying it on the balcony. However, careful
observation of the speaker’s facial expression helps us to
understand the speaker’s aversion to desserts, resulting in
negative emotions in the process of speaking [59], [60].
The knowledge selection strategy is based on emotional
congruence, in the above situation, if only from the text
level, the results are often contrary to the wishes.

6 CONCLUSION AND FUTURE

We propose an AutoML strategy based on emotion con-
gruent effect, which is called AutoML-Emo. On the one
hand, it can effectively select the huge and complex ex-
ternal commonsense knowledge to improve the quality of
reference knowledge; on the other hand, it can select the
best hyperparameters and algorithms combination for the
transform-based model. It consists of three parts: GESM,
LESM, and TAS. Among them, GESM is a knowledge selec-
tion mechanism based on emotion congruent effect, which
is used to quickly and globally select unknown knowledge
to avoid falling into local optima. In addition, GESM also
uses sentimental intensity to further describe the degree of
emotional consistency. The LESM is an automatic selection
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Fig. 6. Analysis results of ablation study. (Legend: the greater the lifting
F1 score of different structures, the more contribution in AutoML-Emo.)

mechanism based on a genetic algorithm, which is used
to accurately and locally select more suitable knowledge
combinations from known external knowledge. If there is
no GESM and LESM research knowledge directly, the exper-
imental cost of the algorithm is expensive, and the search
results are easy to fall into local optima. On the contrary,
if there is no LESM, GESM will not work when positive
words appear in a negative context. At this time, LESM
makes up for the shortcomings of GESM. It is because of
the cooperation and mutual promotion between LESM and
GESM that AutoML-Emo can achieve such an exciting effect
in knowledge selection. In addition, LESM and GESM can
not only promote the performance of our transformer-based
model but also promote the advanced method KET, which
illustrates its good scalability. As for TAS, it is similar to
NAS, but its search is limited to the internal parameter
spaces of the transform-based model. Its existence saves a
lot of experimental costs in the optimization process of the
hyperparameters and algorithms involved in models. After
the TAS, the performance of the transformer-based model
has been significantly improved, and it is better than the
most advanced model.

In the future, we will continue to integrate word-
level, utterance-level, context-level, and dialogue-level mul-
timodal emotions to guide the knowledge selection of
AutoML-Emo. In addition, the measurement of emotional
consistency will not only depend on the emotional intensity
obtained from the VAD emotion model. More diversified
measurement methods should be considered, such as the
hourglass emotion model to measure the degree of emo-
tional consistency. Because the hourglass is a hybrid model
combining discrete method and dimension method.
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