
GpSense: A GPU-friendly method
for common-sense subgraph matching
in massively parallel architectures

Ha-Nguyen Tran and Erik Cambria

School of Computer Science and Engineering
Nanyang Technological University
{hntran,cambria}@ntu.edu.sg

Abstract. In the context of common-sense reasoning, spreading acti-
vation is used to select relevant concepts in a graph of common-sense
knowledge. When such a graph starts growing, however, the number of
relevant concepts selected during spreading activation tends to diminish.
In the literature, such an issue has been addressed in different ways but
two other important issues have been rather under-researched, namely:
performance and scalability. Both issues are caused by the fact that many
new nodes, i.e., natural language concepts, are continuously integrated
into the graph. Both issues can be solved by means of GPU acceler-
ated computing, which offers unprecedented performance by offloading
compute-intensive portions of the application to the GPU, while the re-
mainder of the code still runs on the CPU. To this end, we propose a
GPU-friendly method, termed GpSense, which is designed for massively
parallel architectures to accelerate the tasks of common-sense querying
and reasoning via subgraph matching. We show that GpSense outper-
forms the state-of-the-art algorithms and efficiently answers subgraph
queries on a large common-sense graph.

1 Introduction

When communicating with each other, people provide just the useful information
and take the rest for granted. This ‘taken for granted’ information is what is
termed ‘common-sense’ – obvious things people normally know and usually leave
unstated. Common-sense is not the kind of knowledge we can find in Wikipedia,
but it consists in all the basic relationships among words, concepts, phrases, and
thoughts that allow people to communicate with each other and face everyday life
problems. Common-sense is an immense society of hard-earned practical ideas,
of multitudes of life-learned rules and exceptions, dispositions and tendencies,
balances and checks.

Common-sense computing [3] has been applied in many different branches of
artificial intelligence, e.g., personality detection [19], handwritten text recogni-
tion [26], multimodality [18], and social data analysis [6]. In the context of sentic
computing [2], in particular, common-sense is represented as a semantic network
of natural language concepts interconnected by semantic relations.

This kind of representation presents two major implementation issues: per-
formance and scalability, both due to the fact that many new concepts learnt
through crowd-sourcing [5] are continuously integrated into the graph. These
issues are also the crucial problems of querying and reasoning over large-scale
commonsense knowledge bases (KBs). The core function of commonsense query-
ing and reasoning is subgraph matching which is defined as finding all matches
of a query graph in a database graph. Subgraph matching is usually a bottleneck
for the overall performance because it involves subgraph isomorphism which is
known as an NP-complete problem [7].

Many proposed methods for subgraph matching problem are backtracking
algorithms [24, 8, 9, 12], with novel techniques for filtering candidates sets and
re-arranging visit order. However, all of them use only small database graphs,
and thus, there still remains the question of scalability on large graphs. Some
recent methods utilize indexing techniques to deal with large graphs, through
building the index may take long time and large memory space [22, 27, 28]. An-
other approach is based on distributed computing [1, 23]. By finding results on
many machines simultaneously, those algorithms are able to deal with large-
scale graphs. However, an issue with these methods is that the communication
between a large number of machines is costly.

Graphics Processing Units (GPUs) have recently become popular computing
devices because of their massive parallel. Such basic graph operations as breadth-
first search [10, 13, 16], shortest path [10, 15], and minimum spanning tree [25] on
large graphs can be implemented on GPUs efficiently. The previous backtracking
methods for subgraph matching, however, cannot be straightforwardly applied
to GPUs due to their inefficient uses of GPU memories and SIMD-optimized
GPU multi-processors [14].

In this paper, we propose GpSense, an efficient and scalable method for
solving the subgraph matching problem on large common-sense KBs. GpSense is
based on a filtering-and-joining strategy which is designed for massively parallel
architecture of GPUs. In order to optimize the performance, we utilize a series of
optimization techniques which contribute to increase the GPU occupancy, reduce
workload imbalance and especially enhance common-sense reasoning tasks. The
rest of the paper is structured as follows: Section 2 introduces the background
of the subgraph matching problem and filtering-and-joining approach; Section 3
discusses how to transform common-sense KBs to directed graphs; Section 4
describes the GPU implementation in details; experiment results are shown in
Section 5; finally, Section 6 concludes the paper.

2 Subgraph Matching Problem

2.1 Problem Definition

A graph G is defined as a 4-tuple (V, E, L, l), where V is the set of nodes, E
is the set of edges, L is the set of labels and l is a labeling function that maps
each node or edge to a label in L. We define the size of a graph G is the number
of edges, size(G) =|E|.

Definition 1 (Subgraph Isomorphism). A graph G = (V, E, L, l) is sub-
graph isomorphic to another graph G’ = (V’, E’, L’, l’), denoted as G ⊆ G’, if
there is an injective function (or a match) f: V → V’, such that ∀ (u, v) ∈ E,
(f(u), f(v)) ∈ E’, l(u) = l’(f(u)), l(v) = l’(f(v)), and l(u, v) = l(f(u),f(v)).

A graph G is called a subgraph of another graph G (or G is a supergraph
of G), denoted as G ⊆ G′ (or G′ ⊇ G), if there exists a subgraph isomorphism
from G to G′a.

Definition 2 (Subgraph Matching). Given a small query graph Q and a
large data graph G, subgraph matching problem is to find all subgraph isomor-
phisms of Q in G.

2.2 GPU Approach for Subgraph Matching

In this subsection, we introduce an approach to solve the subgraph matching
problem on General-Purpose Graphics Processing Units (GPGPUs). The ap-
proach is based on a filtering-and-joining strategy which is specially designed
for massively parallel computing architecture of modern GPUs. The main routine
of the GPU-based method is depicted in Algorithm 1.

Algorithm 1: GPUSubgraphMatching (q(V, E, L), g(V’, E’, L’))

Input: query graph q, data graph g
Output: all matches of q in g

1 P := generate query plan(q, g);
2 forall the node u ∈ P do
3 if u is not filtered then
4 c set(u) := identify node candidates(u, g);

5 c array(u) := collect edge candidates(c set(u));
6 c set := filter neighbor candidates(c array(u), q, g);

7 refine node candidates(c set, q, g);
8 forall the edge e (u,v) ∈ E do
9 EC(e) := collect edge candidates(e, c set, q, g);

10 M := combine edge candidates(EC, q, g);
11 return M

The inputs of the algorithm are a query graph q and a data graph g. The
output is a set of subgraph isomorphisms (or matches) of q in g. In the method,
we present a match as a list of pairs of a query node and its mapped data node.
Our solution is the collection M of such lists. Based on the input graphs, we first
generate a query plan for the subgraph matching task (Line 1). The query plan
contains the order of query nodes which will be processed in the next steps. The
query plan generation is the only step that runs on the CPU. After that, the
main procedure will be executed in two phases: filtering phase (Line 2-7) and
joining phase (Line 8-10). In the filtering phase, we filter out node candidates
which cannot be matched to any query nodes (Line 2-6).

After this task there still exists a large set of irrelevant node candidates which
cannot contribute to subgraph matching solutions. The second task continues
pruning this collection by calling the refining function refine node candidates.
In such a function, candidate sets of query nodes are recursively refined until
no more candidates can be pruned. The joining phase then finds the candidates
of all data edges (Line 8-9) and merges them to produce the final subgraph
matching results (Line 10).

Query Plan Generation: generate query plan procedure is to create a good
node order for the main searching task. It first picks a query node which poten-
tially contributes to minimize the sizes of candidate sets of query nodes and
edges. Since we do not know the number of candidates in the beginning, we

estimate it by using a node ranking function f(u) = deg(u)
freq(u.label) [9, 23], where

deg(u) is the degree of a query node u and freq(u.label) is the number of data
nodes having the same label as u. The score function prefers lower frequencies
and higher degrees. After choosing the first node, generate query plan follows
its neighborhood to find the next nodes which has not been selected and is con-
nected to at least one node in the node order. The process terminates when all
query nodes are chosen.

The Filtering Phase: The purpose of this phase is to reduce the num-
ber of node candidates and thus decrease the amount of edge candidates as
well as the running time of the joining phase. The filtering phase consists of
two tasks: initializing node candidates and refining node candidates. In order
to maintain the candidate sets of query nodes, for each query node u we use
a boolean array, c set[u], which has the length of |V ′|. If v ∈ V ′ is a candi-
date of u, identify node candidates sets the value of c set[u][v] to true. The fil-
ter neighbor candidates function, however, will suffers the low occupancy prob-
lem since only threads associated with true elements of c set[u] works while
the other threads are idle. To deal with the problem, collect node candidates
collects true elements of c set[u] into an array c array[u]. As a result, each
running thread can easily be mapped to a candidate of u. After that the fil-
ter neighbor candidates function will filter the candidates of nodes adjacent to
u based on c array[u]. This device function follows a warp-based execution ap-
proach. The details of these parallel functions will be discussed in Section 4.

The Joining Phase: Based on the candidate sets of query nodes, col-
lect edge candidates function collects the edge candidates individually. The rou-
tine of the function is similar to filter neighbor candidates, but it inserts an
additional part of writing obtained edge candidates to candidate edge arrays.
In order to output the candidates to an array, we employ the two-step output
scheme [12] to find the offsets of the outputs in the array and then write them
to the corresponding positions. combine edge candidates merges candidate edges
using a warp-centric fashion to produce the final subgraph matching solutions.

3 Common-sense Knowledge as a Graph

In this section, we discuss how a common-sense KB can be naturally repre-
sented as a graph and how such a KB can be directly transformed to a graph
representation.

3.1 Common-sense Knowledge Graph

Instead of formalizing common-sense reasoning using mathematical logic [17],
some recent common-sense KBs, e.g., SenticNet [4], represent data in the form
of a semantic network and make it available to be used in natural language
processing. In particular, the collected pieces of knowledge are integrated in
the semantic network as triples of the format < concept-relation-concept >.
By considering triples as directed labeled edges, the KB naturally becomes a
directed graph. Figure 1 shows a semantic graph representation of a part of
common-sense knowledge graph for the concept cake.

Fig. 1. Common-sense knowledge graph

3.2 Common-sense Graph Transformation

This subsection describes how to directly transform a common-sense KB to a
directed graph. The simplest way for transformation is to convert the KB to a
flat graph using direct transformation. This method maps concepts to node IDs
and maps relations to labels of edges. Note that the obtained graph contains no
node labels because each node is mapped to a unique ID. Table 1 and 2 show
the mapping from concepts and relations of the common-sense KB in Figure 1
to node IDs and edge labels. The transformed graph from the KD is depicted in
Figure 2.

In the general subgraph matching problem, all nodes of a query graph q are
variables. In order to produce the subgraph isomorphisms of q in a large data
graph g, we must find the matches of all query nodes. Unlike the general problem,
the query graphs in common-sense querying and reasoning tasks contain two
types of nodes: concept nodes and variable nodes.

Concept Node ID

Person v0
Cook v1

Restaurant v2
Dessert v3
Survive v4

Eat v5
Satisfy Hunger v6

Sweet v7
Cake v8

Table 1. Node Mapping Table

Relation Edge Label

IsA r0
CapableOf r1
AtLocation r2

Desires r3
UsedFor r4

HasProperty r5
MotivatedBy r6
ReceiveAction r7

Table 2. Edge Label Mapping Table

Fig. 2. Direct transform of Common-sense KB

A concept node can only be mapped to one node ID in the data graphs while
a variable node may have many node candidates in the data graph. Similarly,
query edges are also categorized into variable edges and labeled edges. Figure 3
illustrates the conversion of a common-sense query to a directed query graph.

In the sample query transformation, the query concepts Person and Satisfy
Hunger correspond to two data nodes with IDs of v0 and v6. Two query relations
IsA and UsedFor are mapped to edge labels r0 and r4. The query graph also
contains 2 variable edges ?x, ?y and 3 variable nodes ?a, ?b, ?c. The direct
transformation is a common and simple approach to naturally convert a semantic
network to a directed graph.

(a) Common-sense query (b) Transformed query graph

Fig. 3. Direct transformation of Common-sense query

4 Common-sense Subgraph Matching

In this section, we introduce the complete implementation of our common-sense
subgraph matching method, namely GpSense, on large-scale common-sense KBs
using GPUs. In order to support common-sense querying and reasoning, opti-
mization techniques are also applied to GpSense.

Fig. 4. Graph representation of the data graph in Figure 2

4.1 Graph Representation

In order to maintain and efficiently process the data graph G(V,E) on GPUs, we
use three array structures: an array whose size is identical to the size of V plus
one, termed nodes array, and another array consisting of adjacency lists of all
nodes in V , termed edges array. The nodes array has pointers to the adjacency
lists of the nodes in the edges array. The additional, the last element of the nodes
array indicates the length of the edges array. The last array with the size of |E|
stores the labels of all edges in the data graph. Figure 4 shows the representation
of the graph illustrated in Figure 2 in the GPU memory.

The advantage of the data structure is that nodes in the adjacency list of a
node are stored next to each other in the GPU memory. During GPU execution,
consecutive threads can access consecutive elements in the memory. Therefore,
we can avoid the random access problem and decrease the accessing time for
GPU-based methods consequently.

4.2 GPU Implementation

In this subsection, we describe the implementation of parallel functions such
as collect node candidates, and filter neighbor candidates in detail. These func-
tions are based on two optimization techniques: occupancy maximization to hide
memory access latency and warp-based execution to take advantage of the co-
alesced access and to deal with workload imbalance between threads within a
warp.

collect node candidates: The purpose of this device function is to collect
the candidates of a query node u in the boolean array c set[u] to a candidate
array c array[u]. The output of this function will maximize the GPU occupancy
(i.e., maximize the number of running threads) for the next procedures. GpSense

executes the task by adopting a stream compaction algorithm [11] to gather
elements with the true values in c set[u] to the output array c array[u]. The
algorithm employs prefix scan to calculate the output addresses and to support
writing the results in parallel. The example of collecting candidate nodes of ?c
is depicted in Figure 5. By taking advantage of c array, candidate nodes v1, v2,
v3, v4, v5 can easily be mapped to consecutive active threads. As a result, our
method achieves a high occupancy.

Fig. 5. Collect candidate nodes of ?c

filter neighbor candidates: GpSense follows the adjacent edges of u to
filter the candidates of query nodes connected to u. The step might suffer from
warp divergence because of the diverse sizes of adjacency lists of u′s candidates.
To overcome the problem, we employ a coarse-grained and warp-based method
inspired by Hong et al. [13]. In this approach, an entire warp is responsible for the
adjacency list of a candidate. Figure 6 shows an example of filtering candidate
nodes of ?a based on the candidate set of ?c, C(?c) = {v1, v2, v3, v3, v5}. Each
candidate of ?c is mapped to a warp to filter the candidates of its adjacency
node ?a.

Fig. 6. Filter candidates of ?a based on candidate set of ?c

4.3 Optimization Techniques

In this subsection, we introduce optimizations that we apply to enhance the
efficiency of the subgraph matching problem in common-sense querying and
reasoning.

Modify the query plan based on the properties of common-sense queries.
First, unlike query graphs in general subgraph matching problems, common-
sense query graphs contain concept nodes and variable nodes. We only need
to find the matches of nodes in a subset of variable nodes, termed projection.

Second, nodes of a common-sense knowledge graph are not labeled. They are
mapped to node IDs. Therefore, the frequency of a concept node in a query is
1 and that of a variable node is equal to the number of data nodes. As a result,
the ranking function used for choosing the node visiting order cannot work for
common-sense subgraph matching.

Using the above observations, we make a modification for generating the node
order as follows: we prefer picking a concept node u with the maximum degrees
as the first node in the order. By choosing u, we can minimize the candidates
of variable nodes connected to u. The next query node v will be selected if v is
connected to u and the adjacency list of v consists of maximum number of nodes
which is not in the order among the remain nodes. We continue the process until
edges connected to nodes in the node order can cover the query graph.

Use both incoming and outgoing graph representations: An incoming
graph is built based on the incoming edges to the nodes while an outgoing graph
is based on the outgoing edges from the nodes. The representation of Common-
sense graph in Figure 4 is an example of outgoing graph representation. Given a
query graph in Figure 3, assume that we only use an outgoing graph as the data
graph. Based on the above query plan generator, node v0 is the first node in the
order. After that we filter the candidates of ?c based on v0. Since ?c does not have
any outgoing edges, we have to pick ?a as the next node and find its candidates by
scanning all the data graphs. There are some issues in this approach: 1) We need
to spend time to scan all the data graph nodes. 2) The number of candidates can
be very large because the filtering condition is weak. To overcome the problem,
we use an incoming graph along with the given outgoing graph. By using the
additional graph, candidates of ?a can be easily filtered based on the candidate
set of ?c. The number of candidates of ?a, therefore, is much smaller than that
in the previous approach. Consequently, GpSense can reduce a large amount of
intermediate results during execution which is one of the most crucial issues for
GPU applications.

5 Experiment Results

We evaluate the performance of GpSense in comparison with state-of-the-art
subgraph matching algorithms, including VF2 [8], QuickSI (QSI) [22], GraphQL
(GQL) [12] and TurboISO [9]. The experiments are conducted on SenticNet and
its extensions [20, 21]. The query graphs are extracted from the data graph by
picking a node in SenticNet and following BFS fashion to achieve other nodes. We
choose nodes in the dense area of SenticNet to ensure that the obtained queries
are not just trees. The runtime of the CPU-based algorithms is measured using
an Intel Core i7-870 2.93 GHz CPU with 8GB of memory. Our GPU algorithms
are tested using CUDA Toolkit 6.0 running on the NVIDIA Tesla C2050 GPU
with 3 GB global memory and 48 KB shared memory per Stream Multiprocessor.
For each of those tests, we execute 100 different queries and record the average
elapsed time. In all experiments, algorithms terminate only when all subgraph
matching solutions are found.

Fig. 7. Comparison with state-of-the-art methods

The first set of experiments is to evaluate the performance of GpSense on Sen-
ticNet and compare it with state-of-the-art algorithms. SenticNet is a common-
sense knowledge graph of about 100,000 vertices which is primarily used for
sentiment analysis. In this experiment, we extract subsets of SenticNet with the
size varying from 10,000 nodes to 100,000 nodes. All the data graphs can fit into
GPU memory. The query graphs contain 6 nodes.

Figure 7 shows that GpSense clearly outperforms VF2, QuickSI and GraphQL.
Compared to TurboISO, our GPU-based algorithm obtains the similar perfor-
mance when the size of the data graphs is relatively small (i.e., 10,000 nodes).
However, when the size of data graphs increases, GpSense is more efficient than
TurboISO.

Figure 8a shows the performance results of GpSense and TurboISO on the
query graphs whose numbers of nodes vary from 6 to 14. Figure 8b shows their
performance results when the node degree increases from 8 to 24, where the num-
ber of query nodes is fixed to 10. As shown in the two figures, the performance
of TurboISO drops significantly while that of GpSense does not.

(a) Varying query sizes (b) Varying average degrees

Fig. 8. Comparison with TurboISO

This may be due to the fact that the number of recursive calls of TurboISO
grows exponentially with respect to the size of query graphs and the degree of
the data graph. In contrast, GpSense with the large number of parallel threads
can handle multiple candidate nodes and edges at the same time, thus the per-
formance of GpSense remains stable.

6 Conclusion

In this paper, we introduced an efficient GPU-friendly method for answering
subgraph matching queries over large-scale common-sense KBs. Our method,
GpSense, is based on a filtering-and-joining approach which is suitable to be
executed on massively parallel architecture of GPUs. Along with efficient GPU
techniques of coalescence, warp-based and shared memory utilization, GpSense
provides a series of optimization techniques which contribute to enhance the
performance of subgraph matching-based common-sense reasoning tasks. Ex-
periment results show that our method outperforms previous backtracking-based
algorithms on CPUs and can efficiently answer subgraph matching queries on
large-scale common-sense KBs.

References

1. M. Brocheler, A. Pugliese, and V. S. Subrahmanian. Cosi: Cloud oriented subgraph
identification in massive social networks. In International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), pages 248–255. IEEE, 2010.

2. E. Cambria and A. Hussain. Sentic computing: a common-sense-based framework
for concept-level sentiment analysis, volume 1. Springer, 2015.

3. E. Cambria, A. Hussain, C. Havasi, and C. Eckl. Common sense computing: from
the society of mind to digital intuition and beyond, pages 252–259. LNCS. Springer,
2009.

4. E. Cambria, D. Olsher, and D. Rajagopal. SenticNet 3: a common and common-
sense knowledge base for cognition-driven sentiment analysis. In Twenty-eighth
AAAI conference on artificial intelligence, pages 1515–1521, 2014.

5. E. Cambria, D. Rajagopal, K. Kwok, and J. Sepulveda. GECKA: game engine for
commonsense knowledge acquisition. In The Twenty-Eighth International Flairs
Conference, pages 282–287, 2015.

6. E. Cambria, H. Wang, and B. White. Guest editorial: Big social data analysis.
Knowledge-Based Systems, 69:1–2, 2014.

7. S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, pages 151–158. ACM,
1971.

8. L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomorphism
algorithm for matching large graphs. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 26(10):1367–1372, 2004.

9. W.-S. Han, J. Lee, and J.-H. Lee. Turbo iso: towards ultrafast and robust subgraph
isomorphism search in large graph databases. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pages 337–348. ACM,
2013.

10. P. Harish and P. Narayanan. Accelerating large graph algorithms on the GPU using
CUDA, pages 197–208. Springer, 2007.

11. M. Harris, S. Sengupta, and J. D. Owens. GPU Gems 3 - Parallel prefix sum (scan)
with CUDA, chapter 39. NVIDIA Corporation, 2007.

12. H. He and A. K. Singh. Graphs-at-a-time: query language and access methods
for graph databases. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 405–418. ACM, 2008.

13. S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Accelerating cuda graph
algorithms at maximum warp. In ACM SIGPLAN Notices, volume 46, pages 267–
276. ACM, 2011.

14. J. Jenkins, I. Arkatkar, J. D. Owens, A. Choudhary, and N. F. Samatova. Lessons
learned from exploring the backtracking paradigm on the GPU, pages 425–437.
Springer, 2011.

15. G. J. Katz and J. T. Kider Jr. All-pairs shortest-paths for large graphs on the
gpu. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium
on Graphics hardware, pages 47–55. Eurographics Association, 2008.

16. D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu graph traversal. In ACM
SIGPLAN Notices, volume 47, pages 117–128. ACM, 2012.

17. E. T. Mueller. Commonsense Reasoning: An Event Calculus Based Approach.
Morgan Kaufmann, 2014.

18. S. Poria, E. Cambria, N. Howard, G.-B. Huang, and A. Hussain. Fusing audio,
visual and textual clues for sentiment analysis from multimodal content. Neuro-
computing, 174:50–59, 2016.

19. S. Poria, A. Gelbukh, B. Agarwal, E. Cambria, and N. Howard. Common sense
knowledge based personality recognition from text, pages 484–496. LNCS. Springer,
2013.

20. S. Poria, A. Gelbukh, E. Cambria, D. Das, and S. Bandyopadhyay. Enriching Sen-
ticNet polarity scores through semi-supervised fuzzy clustering. In IEEE Interna-
tional Conference on Data Mining Workshops (ICDMW), pages 709–716, 2012.

21. S. Poria, A. Gelbukh, E. Cambria, P. Yang, A. Hussain, and T. S. Durrani. Merg-
ing SenticNet and WordNet-Affect emotion lists for sentiment analysis. In IEEE
International Conference on Signal Processing (ICSP), volume 2, pages 1251–1255.
IEEE, 2012.

22. H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism. Proceedings of the VLDB
Endowment, 1(1):364–375, 2008.

23. Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph matching on
billion node graphs. Proceedings of the VLDB Endowment, 5(9):788–799, 2012.

24. J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM
(JACM), 23(1):31–42, 1976.

25. V. Vineet, P. Harish, S. Patidar, and P. Narayanan. Fast minimum spanning tree
for large graphs on the gpu. In Proceedings of the Conference on High Performance
Graphics 2009, pages 167–171. ACM, 2009.

26. Q.-F. Wang, E. Cambria, C.-L. Liu, and A. Hussain. Common sense knowledge for
handwritten chinese text recognition. Cognitive Computation, 5(2):234–242, 2013.

27. S. Zhang, S. Li, and J. Yang. Gaddi: distance index based subgraph matching
in biological networks. In Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology, pages 192–203.
ACM, 2009.

28. P. Zhao and J. Han. On graph query optimization in large networks. Proceedings
of the VLDB Endowment, 3(1-2):340–351, 2010.

