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Abstract
In the past few years, the use of transformer-based models has experienced increasing popularity as new state-of-the-art

performance was achieved in several natural language processing tasks. As these models are often extremely large,

however, their use for applications within embedded devices may not be feasible. In this work, we look at one such specific

application, retrieval-based dialogue systems, that poses additional difficulties when deployed in environments charac-

terized by limited resources. Research on building dialogue systems able to engage in natural sounding conversation with

humans has attracted increasing attention in recent years. This has led to the rise of commercial conversational agents, such

as Google Home, Alexa and Siri situated on embedded devices, that enable users to interface with a wide range of

underlying functionalities in a natural and seamless manner. In part due to memory and computational power constraints,

these agents necessitate frequent communication with a server in order to process the users’ queries. This communication

may act as a bottleneck, resulting in delays as well as in the halt of the system should the network connection be lost or

unavailable. We propose a new framework for hardware-aware retrieval-based dialogue systems based on the Dual-

Encoder architecture, coupled with a clustering method to group candidates pertaining to a same conversation, that reduces

storage capacity and computational power requirements.

Keywords Dialogue systems � Natural language processing � Artificial intelligence

1 Introduction

Recently, the release of deep pre-trained transformer [1]

based models [2, 3] has led to improved performance in

fields such as natural language processing [4], knowledge

representation [5], commonsense reasoning [6], personality

detection [7] and more. The typical approach sees these

large models used as the base on top of which simple

architectures, such as a classification layer, specialized for

the task at hand are placed. The added architecture is then

trained for the specific task, and the deep transformer base

is fine-tuned at the same time. In most cases, however,

these kind of models are not suited to be placed on

embedded devices where resources are limited. In fact,

deep learning solutions require custom hardware [8], or

aggressive pruning and quantization strategies that affect

generalization performance [9]. These limitations can be

expressed in terms of both memory and inference speed

[10]. Moreover, relying on communication with a server

where larger models can be executed, and then the result

fetched, leads to additional concerns in terms of network

availability and privacy [11, 12].

In this paper, we address some of the aforementioned

issues in the context of dialogue systems, a domain that has

recently attracted increasing attention thanks to new

developments in AI research. In contrast with previous

architectures characterized by a clear-cut separation of
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different components [13], the rapid increase in publicly

available conversational data and the availability of pow-

erful deep learning techniques have recently spurred the

study of holistic data-driven approaches to push the

boundaries of chatbots on different fronts including task-

oriented dialogue systems [14], knowledge-augmented

dialogue systems [15], multimodal dialogue systems [16],

empathetic dialogue systems [17], and conversational

sentiment analysis [18].

In particular, retrieval-based dialogue systems [19–21]

work by finding the best candidate among a set of prede-

fined candidate responses, given a context. While being

limited in the set of possible responses, they are able to

provide syntactically rich and more diverse responses than

their generative counterpart. At the same time, this poses

several challenges. For example, in order to identify the

best candidate, in principle all of the possible candidates

must be evaluated with respect to the current context,

which may result in prohibitive inference time. When this

kind of system is to be deployed on embedded resources-

constrained devices, additional challenges arise. Firstly, the

computational power is further reduced. Secondly, it might

not be practical to maintain a list of all candidates on the

local storage, due to memory constraints. The solution that

we propose in this paper splits the candidate search in two

phases. During the training phase, the candidate responses

are divided in a set of clusters. During the inference phase,

a cluster identifier (CI) selects a subset of the candidate

responses by implementing a classification function that

assigns the novel context to a specific cluster. Notably,

cluster-based distribution is particularly suitable for devi-

ces with multiple level of memories characterized by dif-

ferent speed/dimension trade-off. The retrieval model

selects the best response looking only at the selected subset

of responses, i.e., the one belonging to the selected cluster.

The clustering procedure aggregates data into clusters

by using a similarity measure induced by a binary classifier

model with the task of determining whether two sentences

belong to a same dialogue. This metric is defined in order

to achieve two desirable properties. Firstly, the inference

process is accelerated as the cluster metric definition hinges

on contexts and responses belonging to a same cluster.

Secondly, the clusters defined by this metric are also

characterized by wider sense of locality beyond the indi-

vidual context and response, in the sense that we are likely

to find sentences within a same dialogue, even at a greater

distance, within a same cluster. These two properties are

well-suited for a system that is to be placed on embedded

devices, as they address two of their major limitations,

namely computational power and storage capacity.

1.1 Contribution

The work presented in this paper defines a new framework

for hardware-aware retrieval-based dialogue systems. The

main contributions can be summarized as follows:

• The definition of a hardware-aware retrieval-based

dialogue system framework. The proposed framework

allows a partitioning of the candidate responses that

allows faster inference and enables hierarchical memory

solutions. The first property, faster inference, is desirable

for embedded devices as these portray a scenario with

reduced computational power. Moreover, it can help to

lengthen battery life with respect to a traditional system.

The second property is desirable as storage capacity is

often a limitation, in embedded devices, that calls for ad-

hoc solutions such as the one that we propose in this

paper. Note that since the method that we propose makes

no strong assumptions on the underlying hardware, it is

suitable in all those cases in which multiple levels of

memory are available in any form (e.g., on a device itself,

or via communication with a server). Moreover, even

within a single memory, the method may still be used to

accelerate the inference process.

• A clustering strategy for the candidate responses based

on a data driven similarity measure. Importantly, the

similarity measure is learned directly from the training

data, optimizing the criterion that we set, based on the

properties that we wish the final clustering to possess.

In our case, since the overall framework is tailored to

the requirements of embedded devices, we choose a

criterion that promotes a higher similarity for sentences

that belong to the same conversation, in order to

minimize the need for memory updates.

Additionally, we show that:

• Small-margin knowledge distillation [22] from a pre-

trained network continues to be effective in the

dialogue retrieval task, and can lead to reliable

improvement at a negligible cost.

• The recently released Poly-Encoder model [23] contin-

ues to outperform the original Dual-Encoders [19] by a

significant margin in most cases and on different tasks

using a GRU base instead of a transformer, while

maintaining the possibility to pre-compute candidate

embeddings.

• A naı̈ve form of multitask learning [24] to jointly learn

the dialogue retrieval function and the clusters similar-

ity metric, despite performing worse on the individual

tasks, leads to the number of parameters to be roughly

halved, which can prove useful in the case of user-

specific training of the system to better tailor the model

to individual needs based on user profile.
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2 Related work

2.1 Retrieval-based dialogue systems

Retrieval-based dialogue systems can be placed under the

umbrella term of candidate scoring models, where the most

suitable candidate, given an input context, is to be found.

One of the ways in which these models can be categorized

is by the type of interaction that context and candidates

undergo. Specifically, in the case of Dual-Encoders

[19, 25], context and candidate are encoded through sep-

arate networks and then combined, e.g., by means of a dot

product, to obtain the final output.

In the case of Cross-Encoders [26, 27], context and

candidate are combined before the encoding takes place,

permitting to model more complex interactions. At the

same time, Cross-Encoders fall short when it comes to

inference speed, as by requiring both context and candidate

to perform the forward pass, pre-computing the encodings

is not possible. Recently, in [23], the Poly-Encoder archi-

tecture that we also use in this work was introduced. Poly-

Encoders attempt to maintain the speed of Dual-Encoders

by encoding the candidate responses in the same fashion,

whereas the context encoding also utilizes information

from the response candidate, thus allowing for a more rich

set of interactions than Dual-Encoders. In particular, in

order for the Poly-Encoder architecture to capture the

advantages of both the Dual-Encoder and the Cross-En-

coder architecture, it does the following: to achieve infer-

ence speed comparable to the Dual-Encoder, it maintains

the possibility to pre-compute the candidate response

embeddings by using a standalone architecture block that

does not receive inward information from the context

embedder block. To model more complex interactions, in a

similar fashion to the Cross-Encoder, it uses the candidate

response embeddings to attend over the context.

2.2 Top candidate selection

The importance of speeding up the inference process for

top candidate selection, and softmax-based classifiers in

particular, was previously acknowledged. In [28, 29] the

authors proposed to reduce Maximum Inner Product Search

(MIPS) to nearest neighbor search (NNS) and then solve

NNS by Locality Sensitive Hashing (LSH). A database

partitioning scheme was introduced in [30]; however, the

effectiveness of the method becomes low for high-dimen-

sional data. Graph-based solution was also proposed

[31–33]. In these solutions, the candidate responses are

reorganized in a graph and top responses are selected based

on graph searching procedures. Finally, solutions targeting

the approximation of softmax, such as MIPS, have been

presented [34, 35] explored quantization to limit inference

time; meanwhile, [36] proposed a greedy solution.

The speedup of top candidate selection by means of

clustering of the context vectors was proposed in [37]. More

specifically, the authors proposed a screening model that

reduces the number of candidate responses to consider, while

preserving high accuracy. The method uses a k-means

clustering algorithm trained on the similarity measure

induced by the softmax classifier. In this work, the retrieval

model is optimized on pairwise similarities, i.e., the cost

function penalizes pairwise errors; meanwhile, softmax

considers similarity of all patterns simultaneously. As a

consequence, the induced space is less likely to cluster group

of similar data close to each other in a globular manner.

Remarkably, spectral clustering works directly on the simi-

larity matrix. As a consequence, it is expected to identify the

best clusters for the pairwise metric defined by the binary

classification model, i.e., the metric that measures the like-

lihood that two sentences belong to the same conversation.

3 Approach

The paramount goal of this paper is the development of

hardware-aware retrieval-based dialogue systems. In order

to achieve this goal, the set of candidate responses is

divided in subsets, based on a clustering procedure. During

the inference phase, a filtering model named Cluster

Identifier (CI) selects, based on the incoming patterns, a

cluster that is to be further explored in looking for the

appropriate response. Thus, the retrieval model selects the

best response by checking only a subset of the overall set,

the subset contained in the cluster that is selected by the CI.

This solution has two important properties. Firstly, the

number of comparisons to be performed in identifying the

best candidate is reduced, reducing inference time and

power consumption. Secondly, this partitioning of data in

clusters enables the use of multiple levels of memory. By

doing so, the complete set of data can be hosted in a large

and slow memory. At the beginning of the conversation,

the cluster selected by the CI can be loaded in a smaller and

faster memory. The initial overload in time due to the fetch

and load of the cluster in the first phase will be balanced

later with the better performance of the smaller memory.

To achieve these two properties, we build the clusters

following the method explained in Sect. 3.2.

Figure 1 summarizes the overall inference system. The

CI retrieves the selected subset from the database. Then,

the retrieval model selects the best response among the

small chunk selected. The figure highlights the logical

division among the database and the Selected Subset that

can be mapped to two different storage solutions. As an

example, in a smartphone, the Database could be hosted in
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a ssd memory; meanwhile, the selected subset could be

hosted in a small portion of the RAM memory.

The following two subsections describe in detail the

retrieval model and the clustering strategy employed to

implement the overall system.

3.1 Dialogue retrieval model

The Dialogue Retrieval Model (Retrieval Model in Fig. 1)

selects the response of the algorithm by searching the best

match for the input context among a set of candidates, by

computing the pairwise similarity between the input con-

text and each response candidate.

As our main retrieval model, we choose to employ the

Dual-Encoder architecture with a couple of differences

with respect to the one originally proposed in [23]. Firstly,

as the base encoder we do not use BERT, but we instead

use a Gated Recurrent Unit (GRU) [38] base as to keep the

model lightweight. Secondly, we use the last two hidden

states of the GRU encoder still results in a computational

cost lower than the Poly-Encoder while showing better

performance in our experiments.

Specifically, the context c ¼ c1; ::; cnc and the candidate

response r ¼ r1; ::; rnr are first encoded into hc ¼ hc1; ::; h
c
nc

and hr ¼ hr1; ::; h
r
nr, respectively:

hcnc ¼ GRUcðhcnc�1; eðcncÞÞ ð1Þ

hrnr ¼ GRUrðhrnr�1; eðrnrÞÞ ð2Þ

where eðxÞ denotes the GloVe [39] embedding of word

x. The score is determined as pr ¼ ½hcnc�1; h
c
nc�

T ½hrnr�1; h
r
nr�,

and the cost function used is the Binary Cross Entropy

(BCE) between the prediction and the ground truth.

3.2 Cluster identifier

The CI identifies the clusters that are more likely to contain

appropriate responses. The process is divided in two stages.

Offline, firstly a similarity measure is optimized on the

training data. Then, the set of responses is divided into

clusters and stored in a database. Online, a CI selects the

interesting clusters based on the current context.

The quality of the clustering of the response candidates

plays a key role in the proposed system. In principle, in

order to have an effective solution the clustering algorithm

should group all the sentences belonging to a same con-

versation into a same cluster. The major point to obtain an

effective clustering is the definition of a good notion of

similarity. The proposed similarity measure is obtained by

optimizing an encoder structure on the training data. In

addition, the clustering strategy should trade-off the clus-

ters’ dimension and database coverage. On the one hand, a

small cluster implies a small number of comparisons for

the Retrieval Model, leading to fast inference. On the other

hand, if the cluster is too small, it is possible that the

original dataset is not sufficiently represented. Accord-

ingly, the solution would select a suboptimal response.

Also note that heuristics based on threshold values for the

confidence of the Retrieval Model can be easily applied to

expand the search when the selected subset is deemed not

representative.

In this work, the encoder shares the same architecture of

the retrieval model described in Sect. 3.1, but the training

strategy is slightly different. More specifically, the encoder

addresses the following binary classification problem. It

receives two input sentences, and is trained with the

objective of predicting 1 if the sentences belong to the

same conversation and 0 otherwise. Once the encoder is

trained, the similarity matrix containing the pairwise sim-

ilarity of the data is computed. The size of this matrix

grows quadratically with the number of sentences that are

to be clustered. With the increasing of the size of the

training set, the number of operations rapidly becomes too

big. Therefore, we use a sampling strategy so that each

sentence is compared only with a small subset of the

training data. In particular, from each conversation, we

extract a subset of k sentences. The selected subset is

chosen as the subset of k sentences that obtained the

average highest score when compared with the sentences of

the same conversation using the binary classification met-

ric. The underlying rationale is to filter out non-informative

sentences and reduce the computational cost.

Previous approaches explored the use of k-means clus-

tering using the hidden representation of the input data

inside the encoder. However, it should be noted that (1) the

encoder is trained on a subset of the training data and (2)

the loss function measures only pairwise similarities. As a

consequence, there are no guarantees about the overall

Fig. 1 Overall architecture of the proposed system
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distribution of the sentences in the remapped space.

Spectral clustering instead works directly on the similarity

matrix. The key point is that it works on pairwise simi-

larities; as a consequence, it is expected to better fit the

space induced by the proposed metric.

Assigning a novel datum to a cluster is not straightfor-

ward because clusters do not have explicit centroids as in

the case of k-means [40]. To overcome this issue, a clas-

sifier is implemented. Given a training set X , a label set Y

is built based on the clustering results. Then, the eventual

classifier is trained on the classification problem (X , Y).

The CI classification system employs a LSTM and a

fully connected layer followed by a softmax:

pc ¼ softmaxðWhþ bÞ h ¼ LSTMðeðcÞÞ ð3Þ

where c is the context. The clustering mechanism is

detailed in Algorithm 1.

3.3 Training optimization

To boost the performance of our model, we experiment with

two approaches that present a cost only during the initial

training phase. Firstly, we experiment with a knowledge

distillation approach [41] whereby the cost function that is

minimized during the training phase also takes into account

the labels predicted by a larger and more accurate model. The

main idea behind this approach is that of leveraging the pre-

trained teacher network to instill additional task specific

knowledge into the smaller model by promoting an output

level behavior where the latter model mimics the behavior of

the former. Since the knowledge is instilled by only

observing the output of the larger model, this method is

architecture-agnostic [41]. To accomplish this, we use a pre-

trained Cross-Encoder to obtain the additional score labels

se1; ::; s
e
n where n is the number of elements in the training set.

The complete cost function for a (context, response) pair

ðci; riÞ is briefly defined as follows:

Lðci; riÞ ¼ ð1 � kÞBCEðpri ; sriÞ þ kMAEðpri ; seriÞ ð4Þ

where pri is the score given to candidate response ri by the

retrieval model, k is a trade-off parameter, BCE denotes

Binary Cross-Entropy with logits, MAE the Mean Abso-

lute Error, and sri is 1 if ri is the response to ci and 0

otherwise.

Secondly, to attempt to further reduce the number of

parameters, which might have significant impact in the

case of user-specific model training, we experiment with a

simple multitask learning approach whereby we employ

the same model for the retrieval task and for the clustering

similarity metric definition. In particular, we alternate

between the two tasks that are discussed in Sects. 3.1

and 3.2 (Binary Classification) at every batch during the

training phase. We experiment with two settings. In the
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first setting, we naı̈vely use a shared final layer between the

two tasks that alternate at each batch. In the second setting,

we place task-specific projection layers, that re-map the

final context representation and the response representation

into a new vector space, of the same dimension, based on

the task. In particular, the context representation in Eq. 1

and the response one in Eq. 2 undergo a further transfor-

mation based on the task, as follows:

hct1 ¼ tanhðWp1;t1 ½hcnc�1; h
c
nc�Þ

hrt1 ¼ tanhðWp2;t1 ½hrnr�1; h
r
nr�Þ

ð5Þ

hct2 ¼ tanhðWp1;t2 ½hcnc�1; h
c
nc�Þ

hrt2 ¼ tanhðWp2;t2 ½hrnr�1; h
r
nr�Þ

ð6Þ

where Wp1;t1 ;Wp2;t2 ;Wp1;t2 ;Wp2;t2 are model parameters and

tanh the hyperbolic tangent. The score is determined as

pr;t1 ¼ ðhct1Þ
Thrt1 and pr;t2 ¼ ðhct2Þ

Thrt2 for the first and second

task, respectively.

3.4 Computational cost analysis

In this section, the computational cost of the proposed

solution is analyzed. Without loss in generality, we first

consider the case where a single memory supports all the

computations. Later, we analyze a solution with multiple

levels of memory, pointing out the trade-off between speed

and memory consumption.

Suppose that a set of N responses is divided in K clus-

ters, where for each response the corresponding clusters

label is specified fR;YRg. Let Nk be the number of

responses contained in the k-th cluster.

Using the standard implementation, the eventual clas-

sifier requires the computation of the score, via the retrieval

model, for all the N candidate responses. In practice, the

computational cost grows as:

Obase ¼ N � ORM ð7Þ

where ORM is the computational cost of a single inference

phase of the retrieval model.

The proposed algorithm splits the inference phase in two

parts. Firstly, the CI ranks the clusters based on the like-

lihood that a cluster contains the correct response. Later,

the retrieval model scores the context against the subset of

candidate responses identified by the CI. As a consequence,

the computational cost becomes:

Oproposal ¼ OCI þ
XNS

k¼1

NkORM ð8Þ

where Ns is the number of clusters that are involved in the

retrieval operation. For example if Ns ¼ 2 the retrieval

model scores the context against the responses belonging to

the two clusters with maximum likelihood only.

Given that OCI ’ ORM, the speedup of the proposed

solution is:

G ¼ Obase

Oproposal

¼ N

1 þ
PNS

k¼1 Nk
ð9Þ

Equation 9 points out that the eventual speedup is pro-

portional to the subset of clusters that are involved in the

retrieval phase. The eventual speedup is maximized when

cluster sizes are uniformly distributed Nk ¼ N=K. Experi-

mental results shown in the following demonstrate that

good performance in terms of accuracy and recall can be

obtained for small values of Ns.

From a memory point of view the proposed solution

stores almost double of parameters for models, again

assuming that the number of parameters of the CI model

MCI is about the same as MRM, i.e., the number of

parameters of the retrieval model. However, the major

memory contribution is given by the set of responses.

Retrieval-based dialogue systems are memory hungry by

definition. In most of cases, commercial embedded devices

do not embed enough RAM memory to host the entire set of

responses. As a consequence, only a small portion of the

data can be loaded. Loading data from external memories,

or even servers, is a time demanding operation and rapidly

becomes the computational bottleneck in most of the

applications if frequent updates are required.

The present solution clusters data based on the proba-

bility that two sentences belong to the same conversation.

In an ideal configuration, the CI should select one cluster at

the beginning of the interaction and maintain the same

configuration throughout the conversation. In doing so,

data fetching would be minimized, rendering the proposed

solution particularly suitable for memory constrained

devices. In practice, relying solely on the initial message to

select the clusters that will be used throughout the con-

versation is unlikely to be an optimal strategy. As the

conversation unfolds, topics are likely to shift, therefore a

more realistic approach would see the clusters being peri-

odically updated based on heuristics such as the last time

they have been used, or other strategies inspired to existing

cache update mechanisms. Lastly, note that the method

proposed in this paper scales consistently with dataset size

and that the number of clusters depends on the variety of

conversational patterns rather than on their number.

4 Experiments

4.1 Dataset

To test our system, we choose to employ the two datasets

that we now briefly describe. Firstly, DailyDialog [42] is a

textual dataset consisting of day-to-day conversations. The
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conversations in this dataset are more similar to real life

daily conversation, as opposed to datasets such as those

based on Twitter [43], as they are crawled from websites

where English learners practice day-to-day dialogue. In

addition, each conversation focuses on a specific topic, as

in real life situations. In all of our experiments we use the

data splits provided, adapting them as needed for the task.

In total, this dataset contains 13118 dialogues and an

average of 7.9 speaker turns. Each turn contains an average

of 14.6 tokens. Secondly, the Ubuntu Dialogue Corpus [19]

is one of the largest and most widely used conversational

datasets. This corpus consists of around one million dyadic

conversations concerning technical support for various

Ubuntu-related problems. We use the original split con-

taining 1 million training instances. We use this dataset to

validate our dialogue retrieval component. For all other

experiments, we use the DailyDialog corpus.

4.2 Experimental details

4.2.1 Retrieval task

The DailyDialog dataset format is not suited to be used for

a dialogue retrieval task. Therefore, we adapt it by creating

pairs of context and candidate responses for the training

set, where the label is 1 if the candidate response is the

utterance that follows the context, and 0 otherwise. Simi-

larly to [44], we use an uneven ratio of positive to negative

samples. In particular, we use four randomly sampled

responses to be labeled as 0 by the model for every correct

response to be labeled as 1. The negative samples are

chosen by sampling uniformly from the training set, with

the exclusion of the correct response. For the validation set,

in a similar fashion, we sample 9 negative samples for

every positive one in order to evaluate the model based on

recall@k, that is the percentage of times that the correct

response is ranked as relevant by the model among a total

of k possibilities.

For the Ubuntu Dialogue Corpus, we use the original

split provided, with the difference that we choose to

employ word embeddings of dimension 100, as opposed to

the 300 dimensional ones in the original work.

For DailyDialog we use a maximum context length of

128 tokens, and a maximum candidate response length of

32, using a leading padding strategy. For Ubuntu, we use

160 tokens for the context and 32 for the response.

The model is trained with the Adam optimizer [45], a

learning rate of 0.0009, batch size 16 and a maximum of 6

epochs. m, the number of randomly initialized codes, is set

to 16. The best model is chosen at the point where recall

1@10 is maximized on the validation set.

For this task, we experiment with three models, all of

which allow the pre-computation of response candidates,

which is fundamental for fast inference. First is the dual-

encoder, which processes context and response indepen-

dently. Second is the original Poly-Encoder model, and

third is our variation of the Dual-Encoder.

4.2.2 Binary classification task

For the binary classification task, that is at the core of the

similarity matrix used in building the clusters, we use the

same Dual-Encoder-based model used for the retrieval

task. The input this time consists of context, candidate

response pairs where the label is 1 if the context and the

candidate response belong to the same conversation, and 0

otherwise. We randomly sample a maximum of three

instances where the label is positive and three where it is

negative for each conversation.

In this case, we use a maximum length of 32 tokens for

both context and candidate response. Again, we use the

Adam optimizer with learning rate set to 0.0009 and batch

size 16. The maximum number of epochs is 8, and the best

model is chosen when the accuracy is maximized on the

validation set.

As for the retrieval task, here we use the same three

models, as to allow further experimentation with multitask

learning between the two tasks.

4.2.3 Multitask learning

For the multitask learning setting, we use the configuration

that performs best on the retrieval task. Same batch size

and learning rate is used for both tasks, 16 and 0.0009,

respectively. Maximum number of epochs is set to 8, and

all of the other settings are as in the individual tasks. At

every step we train on a batch of each of the tasks, and

validate on each of the tasks separately, keeping track of

the best performance on each.

4.2.4 Clustering task

The selected subset of the training data is clustered using

various number of clusters in order to analyze the trade-off

between computational cost and performance. The cluster-

ing process is performed using the spectral clustering algo-

rithm directly on the similarity matrix obtained comparing

the training data using the similarity metric induced by the

binary classification task. Computations are constrained to

fp32 data format to reduce memory consumption.

The CI is trained on the labeled dataset obtained by the

clustering procedure. Training parameters are set to 100

hidden units for the LSTM, 32 as batch size, a learning rate of

0.0009, a maximum of 5 epochs and Adam as the optimizer.

K-Means-based baseline In addition to our main

method, we also propose a K-Means-based baseline.
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Specifically, we average the output of the two GRU

encoders of the binary classifier, that builds the similarity

matrix, to obtain the representation for each utterance. We

then apply the K-Means algorithm to obtain the clusters.

4.3 Results

In this section, we first analyze the performance of the

individual components that constitute our complete system

and then evaluate the overall system itself.

4.3.1 Dialogue retrieval

To evaluate the Dialogue Retrieval component of our

system, we use the recall@k metric. We experiment with

various configurations varying the number of hidden units

in the GRU layer. Complete results are shown in Table 1.

In the first column, we report the model names, in the

second one the metrics, in the first row the dataset, and in

the second one the number of hidden units used.

We notice that despite performing slightly worse on the

Ubuntu corpus, both the Poly-Encoder and the modified

Dual-Encoder perform significantly better than a Dual-

Encoder baseline on DailyDialog. Moreover, the modified

Dual-Encoder surpasses the recall of the Poly-Encoder in

all cases.

Knowledge Distillation We pick the best model, our

Dual-Encoder with 150 units, and explore the impact of

knowledge distillation from a simple BERT-based Cross-

Encoder, following [23], that scores 0.77 on Recall 1@10.

In particular, we experiment with different values of the k
parameter (Eq. 4) that decides the trade-off between

importance given to the original label and to the soft one

obtained from the Cross-Encoder. The results of this

experiment are shown in Fig. 2. We find that a moderate k
between 0.35 and 0.5 leads to consistent improvement,

Table 1 Recall 1@10, 1@2 and

5@10
Units DailyDialog Ubuntu

40 110 150 150

Dual-Encoder (ours) R1@10 0.61607 0.67746 0.70095 0.62821

R1@2 0.9031 0.92304 0.92545 –

R5@10 0.95714 0.96902 0.97128 –

Poly-Encoder R1@10 0.59301 0.66997 0.68708 0.62796

R1@2 0.89277 0.9205 0.92333 –

R5@10 0.94964 0.96704 0.97015 –

Dual-Encoder R1@10 0.59655 0.65427 0.66091 0.63499

R1@2 0.89673 0.9164 0.91442 –

R5@10 0.95445 0.96195 0.95869 –

Underlined the best performance for each metric

Fig. 2 k denotes the weight

given to the soft labels as per

the cost function in Eq. 4
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whereas a higher one often leads to degradation of the

performance, possibly due to the relatively small margin

between the two classifiers.

4.3.2 Clustering

Similarity matrix definition via Binary Classifier We report

the results, in terms of accuracy, of the Binary Classifier for

various dimensions of the GRU layer hidden size in Fig. 3.

On the x-axis we show the number of units for different

configurations of the various models, whereas on the y-axis

we show the accuracy. Similarly to the retrieval task, we

find that our Dual-Encoder has the best performance, and

both this variation of the Dual-Encoder and the Poly-En-

coder outperform the original Dual-Encoder.

Multitask Learning In Table 2, we show the results of

the two setting using our Dual-Encoder, with and without

the projection layer. We notice that the performance on the

individual tasks drops, and that using a projection layers

leads to further degradation of both recall 1@10 and

accuracy. This approach leads to a loss of performance,

however having a joint model halves the number of

parameters required to be tuned.

Clustering In Table 3, we report the results for the

clusters creation task, as percentage of dialogues that have

at least 50% of the sentences in the same cluster, as the

number of training patterns varies. In the table, the best

results on this metrics are shown; however, in the

subsequent experiments we take the models that perform

best with an additional constraint in terms of distribution of

elements within the clusters. In particular, we constrain the

maximum share of elements in a single cluster. In Table 4,

we report the same metric reported in Table 3 for the

models that achieve the best result while satisfying the

constraint specified in the Max Share column. In Table 5,

we report a thorough analysis for the models of which in

Table 4.

We notice that the clusters created through the K-Means

baseline (KM) tend to have elements that are more evenly

distributed, in terms of the standard deviation of the clus-

ters distribution (Std). However, when we look at Dist,

which denotes the average distance between the cluster that

the correct response resides in, and the one the context is

assigned to, we find that the CI-based method vastly out-

performs the KM alternative.

Acc denotes the accuracy of the model in picking the

cluster in which the response to the context is contained.

Again, we find that the CI method performs significantly

better and more consistently as the number of clusters

increases. R@10C and R@10A denote, respectively, the

recall 1@10 when the 9 negative samples are chosen from

Fig. 3 Binary classifier performance

Table 2 Multitask approach

using Dual-Encoder with 150

hidden units

Shared #1 Shared #2 Projection #1 Projection #2

Retrieval 0.65851 0.64946 0.59202 0.58452

Binary classifier 0.7015 0.7135 0.6835 0.6951

For the retrieval task we report the recall 1@10, whereas for the Binary Classifier we report the accuracy.

Shared indicates that the final layer is shared, projection that we have an additional layer, based on the task,

before the final inner product. #1 denotes the results when the retrieval performance is maximized, #2 the

results when the binary classification performance is maximized

Table 3 At most N patterns from each train dialogue: numbers rep-

resent the percentage of validation dialogues with at least 50% of the

sentences in the same cluster

3 4 5 6

Dual-Encoder (ours) - 5 0.86887 0.85085 0.84184 0.86987

Dual-Encoder (ours) - 10 0.71772 0.78478 0.72673 0.73674

Dual-Encoder (ours) - 20 0.6006 0.63463 0.61461 0.5996

Dual-Encoder (ours) - 50 0.4344 0.5465 0.52452 0.4924

Table 4 Percentage of validation dialogues with at least 50% of the

sentences in the same cluster, constrained by the most populated

cluster containing less than the indicated percentage of elements

Score Max share (%)

Dual-Encoder (ours) - 5 0.8699 40

Dual-Encoder (ours) - 10 0.7367 30

Dual-Encoder (ours) - 20 0.6146 20

Dual-Encoder (ours) - 50 0.4545 10
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the correct cluster, and when they are chosen randomly.

We evaluate this only when the correct cluster is chosen by

the CI/KM. In all cases, R@10C is lower than R@10A,

suggesting that responses within the clusters are more

related, hence the drop in performance of the retrieval

model. This phenomenon is more accentuated for the CI

strategy, indicating a better clustering outcome in terms of

elements relatedness. Additionally, we notice that R@10A

is significantly higher than the results shown in Fig. 2,

perhaps indicating that contexts for which it is easier to

identify the correct cluster correspond to responses that are

easier to identify for the retrieval model as well, possibly

due to a more substantial information content. R@C and

R@A indicate the recall when we look at the whole set of

possible candidate responses (3851), in the first case using

our strategy, and in the second by simply comparing all of

the candidate responses. We notice that our strategy

maintains the recall almost unaltered, whereas the KM

mechanism sacrifices increasingly more performance in

terms of recall as the number of clusters increases.

Next, we analyze the speedup that the various configu-

rations yield, as average number of comparisons to be

performed, over a baseline with no clusters, or equiva-

lently, one cluster containing all of the candidate responses.

In the left plot of Fig. 4 we show the speedup comparison

between the two methods as the number of clusters varies.

We find that both proposed strategies lead to a significant

speedup, up to 44.2 times in the case of KM and 27.98 in

the case of CI, with respect to the naı̈ve strategy of com-

paring a context with all candidate responses individually.

Lastly we investigate the degree of locality, as the

average number of contexts per cluster for each conver-

sation. The lower this number, the more clusters we need to

look in during a conversation. This is shown in the right

plot of Fig. 4. We find a significant difference between the

CI and KM approach, showing a much higher degree of

within-conversation locality for the former.

5 Conclusion

In this work, we proposed a new framework for hardware-

aware retrieval-based dialogue systems that aims to pro-

vide increased inference speed and reduce memory

requirements during a conversation. Our system achieves

these two proprieties by devising a clustering method based

on a similarity metric induced by pairwise distances as

defined by a specifically trained neural model set to pro-

mote lower distances for utterances pertaining to a same

dialogue. Experimental results show that the use of the

proposed method maintains good performance in widely

Table 5 Statistics on the final

system
CI-5 CI-10 CI-20 CI-50 KM-5 KM-10 KM-20 KM-50

Std 0.1072 0.0663 0.0332 0.0177 0.0912 0.0523 0.0134 0.0072

Dist 0.9164 1.7403 3.6925 9.3062 1.4103 3.7717 8.4035 23.5118

Acc 0.5341 0.4557 0.3612 0.2773 0.3965 0.2020 0.1223 0.0423

R@10C 0.6062 0.5766 0.532 0.484 0.67 0.6645 0.6433 0.6687

R@10A 0.7418 0.7607 0.8009 0.8230 0.7511 0.7481 0.7495 0.7914

R@C 0.0374 0.0366 0.0374 0.0351 0.0343 0.0236 0.0210 0.0138

R@A 0.0374 0.0374 0.0374 0.0374 0.0374 0.0374 0.0374 0.0374

CI our approach comprising the CI, KM the K-Means-based approach

Fig. 4 Speedup and Locality of the two approaches. Cluster Identifier denotes our main approach, whereas K-Means denotes the alternative

based on K-means
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used metrics while possessing the two aforementioned

properties. In particular, we found a significant speed-up

that scales well with the number of clusters, as well as a

within conversation locality well-above a traditional clus-

tering setup. Moreover, we experimented with knowledge

distillation and multitask learning, that can provide addi-

tional benefits to the final system.
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