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Abstract—To date, most of existing open-domain question an-
swering methods focus on explicit questions where the reasoning
steps are mentioned explicitly in the question. In this paper,
we study implicit question answering where the reasoning steps
are not evident in the question. Implicit question answering is
challenging in two aspects. First, evidence retrieval is difficult
since there is little overlap between a question and its required
evidence. Second, answer inference is difficult since the reasoning
strategy is latent in the question. To tackle implicit question
answering, we propose a systematic solution denoted as Disen-
tangledQA, which disentangles topic, attribute, and reasoning
strategy from the implicit question to guide the retrieval and
reasoning. Specifically, we disentangle topic and attribute infor-
mation from the implicit question to guide evidence retrieval.
For answer reasoning, we propose a disentangled reasoning
model for answer prediction based on retrieved evidence as
well as the latent representation of the reasoning strategy. The
disentangled framework empowers each module to focus on a
specific latent element in the question, and thus leads to effective
representation learning for them. Experiments on the StrategyQA
dataset demonstrate the effectiveness of our method in answering
implicit questions, improving performance in evidence retrieval
and answering inference by 31.7% and 4.5% respectively, and
achieving the best performance on the official leaderboard.
In addition, our method achieved best performance on the
challenging EntityQuestions dataset, indicating the effectiveness
in improving general open-domain question answering task.

Index Terms—Natural Language Processing, Question Answer-
ing, Machine Reading Comprehensive.

I. INTRODUCTION

OPEN-domain multi-step question answering (QA) [1, 2]
is the task of answering questions by reasoning over

multiple pieces of evidence which are retrieved from a large-
scale corpus (e.g., Wikipedia). Typical open-domain QA meth-
ods are based on the retriever-reader paradigm [1, 3], in where
the retriever to select evidence with the goal to cover the full
required evidence, and a reader built on pre-trained language
models to infer the final answer by jointly considering multiple
pieces of evidence [4, 5, 6].

However, a key limitation of existing methods is that
they only addressed explicit question answering where the
reasoning process is mentioned explicitly in the question. For
example, to answer question “Is the area of Persian Gulf
smaller than New Jersey?” as shown in Fig. 1, the reasoning
process is to retrieve the area of Persian Gulf and New Jersey,
then infer the answer by applying the reasoning strategy of size
comparison.
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Evidence Retrieval: 
1. “The Persian Gulf has an area of 96,912 square miles”
2. “New Jersey has a land area of 8,722.58 square miles”

Reasoning Strategy:  Is #1 smaller than #2?
Answer: No

Explicit Question:

Is the area of Persian Gulf  smaller than New Jersey?

Implicit Question: 
Can the Persian Gulf  fit in New Jersey?
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Fig. 1. Illustration of explicit question (Q1) and implicit question (Q2). They
share the same pieces of evidence and reasoning strategy, which are explicitly
mentioned in Q1 (i.e., area of and smaller than) while this is implicit in Q2.

This reasoning process is expressed clearly (i.e., the area
of and smaller than) in the question, which effectively guides
the retrieval and reasoning. In reality, the reasoning process
is often implicit in the question. For example, the implicit
question “Can the Persian Gulf fit in New Jersey?” requires
same reasoning strategy but without clues to retrieve area
information and infer the answer by comparison. Due to
implicit reasoning strategy, existing methods have failed in
answering implicit questions and lag far behind their explicit
counterparts on both retrieval and reading, with about 50%
and 7% performance drop (as shown in Fig. 2), respectively.

The performance of existing methods on implicit QA is
hindered by two major challenges. The first challenge is the
evidence retrieval from the scale corpus with implicit and in-
complete query information. For example, as shown in Fig. 3,
to answer “Can the Persian Gulf fit in New Jersey?”, both lex-
ical and neural retrievers selected sentences about the Persian
Gulf and New Jersey but failed to find the correct evidence
about area. The main reason for this is that the topics (i.e.,
New Jersey and Persian Gulf ) are explicitly mentioned but the
required attribute (i.e., area of ) is not. Another challenge is
inefficient answer reasoning due to implicit strategies. Even
when the golden evidence is provided, it is still challenging
for the QA model to infer the correct answer without knowing
the reasoning strategy (i.e., size comparison).

In this work, we present a new solution for answering
implicit questions, denoted as DisentangledQA, which disen-
tangles topic, attribute, and strategy from an implicit question
to guide the evidence retrieval and reasoning. For the first
challenge of evidence retrieval, our disentangled retriever
consists of 1) a retriever to recall topic-related evidence, and 2)
a retriever, which masks the topics in question and encodes the
masked question as a latent query to further retrieve relevant
attributes.
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(a) Retriever-Reader Framework for Open-domain QA

(a) Recall of evidence retrieval (b) Accuracy of answer prediction

Implicit Question: Can the Persian Gulf  fit in New Jersey?

BM25-Retriever:
The Persian Gulf Basin, is found between the Eurasian and the Arabian Plate. 
New Jersey is a state in the Mid-Atlantic region of the Northeastern United States

Neural Retriever:

The Persian Gulf is described as a shallow marginal sea of the Indian Ocean
New Jersey is a state in the MidAtlantic region of the…United States.

Disentangled-Retriever (Ours):

(Persian Gulf) …, this inland sea of 251,000 square kms (96,912 sq mi) is …
New Jersey is the fourth-smallest state… with …an area of 8,722.58 square…

Fig. 2. Comparison of existing open-domain QA methods in answering
explicit and implicit questions in terms of evidence retrieval and answer pre-
diction. Neural retriever denotes DPR method [5]. The explicit questions and
implicit questions are from Open-SQuAD [3, 7] dataset and StrategyQA [8]
dataset, respectively.

The motivations of designing disentangle retriever are as
follows: a) each candidate evidence piece in the open-domain
corpus is about specific attributes of a topic; b) the required
topics are usually mentioned explicitly while attributes are
latent in implicit questions; and c) masking explicit topics
makes it easier to infer the underlying attributes, for example
answering “Can X fit it Y” requires area information.

For the second challenge, unlike the previous methods
that only predict the answer using the retrieved evidence,
our disentangled reasoning model first predicts the reasoning
strategy with the masked question and masked evidence, and
the final answer is predicted through the perception of the
potential reasoning strategy. The key intuition motivating our
design is that humans can easily judge that the question like
“Can X fit in Y?” can be answered by size comparison over
the evidence of area of X and area of Y.

The proposed disentangled retrieval and reasoning approach
offers two benefits for open-domain QA. First, the disen-
tangled information enables the model to focus on implicit
attributes/reasoning strategy without being disturbed by ex-
plicit topics. Second, the disentangled retrieval and reasoning
models employ separate modules for the explicit and implicit
components of a question, which alleviates the learning diffi-
culty of entangled questions.

In experiments, we first verify the effectiveness of our
method on implicit questions. Then, we demonstrate our
method is effective when applied to general open-domain
QA task. More detailed, experiments on the StrategyQA [8]
dataset (which is currently the only QA dataset for implicit
questions) show that our method significantly outperforms
previous methods for both evidence retrieval and QA by 31.7%
and 4.5% respectively, achieving the best performance on the
official leaderboard. Experiments on a challenging dataset, i.e.,
EntityQuestions [9], show that our method achieved the best
performance than existing spare retrievers and dense retrievers,
demonstrating the generalizability of our method on open-
domain QA tasks.

We summarize our main contributions as follows:
• We highlight the importance of disentangling topic, at-

tribute, and reasoning strategy from the implicit ques-
tions. The disentangled information helps to mine latent
reasoning strategy from the question and guide the evi-
dence retrieval and answer inference. To the best of our
knowledge, this is the first work to tackle the problem of
implicit QA.
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(a) Recall of evidence retrieval (b) Accuracy of answer prediction

Implicit Question: Can the Persian Gulf  fit in New Jersey?

BM25-Retriever:
The Persian Gulf Basin, is found between the Eurasian and the Arabian Plate. 
New Jersey is a state in the Mid-Atlantic region of the Northeastern United States

Neural Retriever:

The Persian Gulf is described as a shallow marginal sea of the Indian Ocean
New Jersey is a state in the MidAtlantic region of the…United States.

Disentangled-Retriever (Ours):

(Persian Gulf) …, this inland sea of 251,000 square kms (96,912 sq mi) is …
New Jersey is the fourth-smallest state… with …an area of 8,722.58 square…

Fig. 3. Comparison of different retrieval methods for implicit question. Topic-
related words are marked in blue and attribute-related words are marked in
red.

• We design a disentangled evidence retrieval method
which contains a topic retriever and an attribute retriever,
which is effective for open-domain QA tasks.

• We design a disentangled reasoning method for answer
inference by modeling the reasoning strategy under the
implicit question.

• We conduct extensive experiments to evaluate the pro-
posed method on the implicit QA dataset and the entity-
centric QA dataset, showing superior performance over
the state-of-the-art methods.

Code and data are available on our Github1. The rest
of this paper is structured as follows: Section II discusses
related researches about open-domain question answering;
Section III introduces the problem formulation of implicit
question answering and describes the details of the proposed
DisentangledQA method, including disentangled retrieval and
disentangle reasoning; Section IV compares our method and
other baselines and provides in-depth analysis of the proposed
method; finally, Section V offers concluding remarks.

II. RELATED WORKS

Open-domain QA is a task of answering questions from
a large collection of documents, and its typical solution is
the retriever-reader approach [1, 10, 11, 12, 13, 14], where
a retriever searches a small set of question-related evidence
from an open-domain corpus, then a reader forms the answer
from the candidate evidence. In this section, we introduce the
related works on the retrieval and reading components.

A. Evidence Retrieval

In the retriever-reader paradigm, the recall of the retriever
significantly affects the final QA performance. Traditional
methods [3] leverage sparse methods like TF-IDF [15] and
BM25 [16, 17] to retrieve candidates from the evidence
collection. However, they mainly rely on lexical matching and
suffer from the term mismatching problem.

To further improve retrieval performance, dense retrieval
methods [18, 19, 20, 21] are widely explored to encode text as
dense vectors and retrieve evidence pieces of which vectors are
closest to the question vector. For example, Karpukhin et al.
[5] proposed the Dense Passage Retriever with a dual encoder
to learn dense representations of questions and passages.

1https://github.com/senticnet/DisentangledQA.
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Das et al. [22] proposed a multi-step retriever to iteratively
retrieve evidence pieces from multiple documents. Nie et al.
[4] designed a dense semantic retriever using paragraph-
level and sentence-level BERT models to select paragraphs
from paragraphs retrieved by TF-IDF. Asai et al. [23] pro-
posed Path Retriever which employs BERT as an encoder
and recursively selects the best passage sequence on top
of a hyperlinked passage graph. Mao et al. [24] proposed
a generation-augmented retrieval for answering open-domain
questions, which augments a query through text generation
of heuristically discovered relevant contexts without external
resources as supervision. Seo et al. [25] introduced query-
agnostic indexable representations of document phrases that
can drastically speed up open-domain QA.

Following Seo et al. [25], Lee et al. [26] proposed an
effective method to learn phrase representations from the su-
pervision of reading comprehension tasks, coupled with novel
negative sampling methods. More recently, researchers also
found that exiting retrieval methods fail to retrieve evidence
for complex and challenging questions from open-domain
corpus. For example, Sciavolino et al. [9] focused on the
entity-centric questions and suggested to incorporate explicit
entity memory into dense retrievers to help differentiate rare
entities. For multi-hop questions, Yadav et al. [27] designed
an unsupervised alignment-based iterative evidence retrieval
method. However, these methods are mainly designed for ex-
plicit questions and are not sufficient for to implicit questions
which have little overlap with their evidence.

B. Question Answering

QA is a challenging task because it requires a simultaneous
understanding of the question and evidence [28, 29, 30, 31,
32, 33]. Previous works have developed a number of deep
neural architectures. For example, in visual QA task, Yu
et al. [34] developed a multi-modal factorized bilinear pooling
approach to understand the visual content of images and
the textual content of questions. Yu et al. [35], designed
co-attention learning to model both the image attention and
the question attention simultaneously, to reduce the irrelevant
features effectively.

Recently, pre-trained language models such as BERT [36]
and RoBERTa [37] have become the typical readers for QA
systems. Benefiting from pretraining and powerful transform-
ers for capturing the contextualized representations [37, 38,
39], these methods achieved state-of-the-art QA performance,
especially for questions where the answer is explicit in a single
evidence piece [7, 40]. To answer questions with multi-step
reasoning, researchers proposed decomposing the question
into several sub-questions and conduct retrieval and reasoning
for multiple steps. For example, Min et al. [41] proposed a
system for multi-hop method that decomposes a compositional
question into simpler sub-questions that can be answered by
off-the-shelf single-hop models. Perez et al. [42] designed
an One-to-N unsupervised sequence transduction that learns
to map one hard, multi-hop question to many simpler, single-
hop sub-questions.

Q1 (explicit):  Is the area of  Persian Gulf  smaller than New Jersey?

Q2 (implicit):  Can the Persian Gulf  fit in New Jersey?

Disentangled
Solution:

Answer Prediction: No

Q1 (explicit):  Is the area of  Persian Gulf  smaller than New Jersey?
Q2 (implicit):  Can the Persian Gulf  fit in New Jersey?
Evidences:

(1) The Persian Gulf has an area of 96,912 square miles.
(2) New Jersey has a land area of 8,772 square miles.

Topic: (Lexical Queries: Persian Gulf, New Jersey)
Persian Gulf and New Jersey

Attribute: (Latent Query: Can [X] fit in [Y]?)
1. [X] is .. with an area of 240,000 square kms
2. [Y] has an area of 8,722.58 square…
3. [Y]..Its lengths is 989 kilometres (615 miles)

Strategy:
[ Can X fit in Y? ; ..area of ; ..area of ; ..lengths ]

size comparison

Implicit Question:

Retriever (BM25/Dense)
1. The Persian Gulf is a ... sea in Western Asia. 
2. New Jersey is a state in Mid-Atlantic region.
3. New Jersey was the second-wealthiest U.S. 
state…
Reader

Fig. 4. Illustration of the proposed method for answering an implicit question.
Q1 and Q2 are the same questions in their explicit and implicit expressions,
respectively. To answer the implicit question Q2, our disentangled solution is
to disentangle the topic, attribute, attribute, and strategy from the question,
then jointly infer the answer.

Wolfson et al. [43] introduced a question decomposition
meaning representation (QDMR) for questions, which con-
stitutes the ordered list of steps, expressed through natural
language, that are necessary for answering a question. Lewis
et al. [44] proposed a pretrained sequence-to-sequence method
BART, which is able to decompose the question into several
sub-questions. Cheng et al. [12] designed a hybrid approach
for leveraging both extractive and generative readers, and
found that proper training methods can provide large improve-
ment over previous models. Pan et al. [45] proposed an
unsupervised framework that can generate human-like multi-
hop training data from both homogeneous and heterogeneous
data sources.

However, these methods fail to answer implicit questions.
The required reasoning steps are unclear, and this makes it
difficult to reasonably decompose the question or explore QA
shortcuts [40] using transformers. In this work, we proposed a
disentangled solution to answer implicit questions. It has been
widely studied in cross-modality visual QA for the idea of
disentangling reasoning. For example, Yi et al. [46] presented
a neural-symbolic approach for visual QA that disentangles
reasoning from visual perception and language understanding.
Yi et al. [47] introduced a dataset named CLEVRER for
systematic evaluation of computational models on a wide
range of reasoning tasks. Chen et al. [48] designed a unified
neural symbolic framework named Dynamic Concept Learner
to study temporal and causal reasoning in videos. Following
this line, we designed a disentangled solution to answer
implicit questions.

To sum up, unlike previous methods, our method is designed
to answer implicit questions. We disentangle the topic and
attribute information from the question to retrieve concise
evidence and disentangle a latent reasoning strategy for answer
inference.

III. METHODOLOGY

In this section, we first introduce the overview of the pro-
posed method and then detail each module, i.e., disentangled
retrieval and disentangled reasoning.
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A. Overview

Implicit QA takes a natural language question q as input,
with the goal of forming the answer using an open-domain
corpus C, which contains large-scale documents on diverse
topics. The reasoning strategy to infer the answer is implicit
in the question q. Generally, a retriever is first designed to
collect a small set of candidate evidence pieces Eq over the
large-scale open-domain corpus C. Then, a reader is designed
to form the answer with the question and pieces of evidence in
Eq . There are two metrics to evaluate the task performance, i.e.,
1) Recall@10 is the fraction of golden paragraphs in the top-
10 paragraphs generated by the retriever; and 2) Accuracy
is the percentage of questions where the answer is correctly
predicted by the reader.

The difficulty in answering implicit questions is that there
is no mention of the reasoning steps and strategy, which
poses the combined challenge of retrieving the relevant context
and deriving the answer based on that context. To solve
this problem, we propose to disentangle topic, attribute and
reasoning strategy from the question to guide retrieval and
reasoning. We illustrate the proposed DisentangledQA method
to answer the implicit question “Can the Persian Gulf fit in
New Jersey?” in Fig. 4. Specifically, our method highlights:

• topic information is explicitly mentioned in question,
e.g., Persian Gulf and New Jersey, which is an important
clue to retrieve relevant documents from the open-domain
corpus;

• attribute information is the required aspects of topics
to answer the question, e.g., area of of Persian Gulf,
which is hidden in the question and we model it as latent
query to search concise sentences from the topic-related
documents;

• reasoning strategy is the operation to infer answer with
the question and evidence, such as size comparison to
answer Can X fit in Y with the evidence of the area of X
and the area of Y.

With this disentangled solution, our disentangled retrieval
consists of 1) a topic retriever to search topic-related evidence;
and 2) an attribute retriever to search concise sentences of
evidence. Our disentangled reasoning module consists of 1) a
strategy predictor to infer the latent reasoning strategy; and
2) an answer predictor to infer the answer with question,
evidence, and latent reasoning strategy.

B. Disentangled Retrieval

The disentangled retrieval method (denoted as Disentangle
Retriever) contains a topic retriever and an attribute retriever
to select evidence for question answering.

1) Topic Retriever: The topic retriever first generates a
small set of documents Dq = {d1, d2, · · · , dn} which are
topical-related to question q. To completely cover the topic
information of the question, we design a multi-view query
generator to obtain queries from the question:

• Named-entity recognition (NER): a pre-trained NER
model2 is used to extract the named entities (such as
person names and locations) from the question.

• Nouns: the noun words and phrases in the question, which
are identified by the part-of-speech tags3.

• N-Grams: the unigram, bigram, trigram, and so on to the
n-grams of the question, where n is the length of the
question4. Considering the huge number of n-grams, we
use exact matching in the retrieval process to avoid noise.

All these queries are combined as a query set and used to
search documents from the open-domain corpus C using the
BM25 function [17]. We search the topic-related fields of C
(e.g., titles of Wikipedia pages or news). All documents in
C are indexed by their titles. We combine the top-50 docu-
ments of all queries and rerank them with a RoBERTa-based
classifier [37], where the input sequence is the concatenated
question and document title. Top-n (n� |C|) documents with
maximum probability are selected as candidate document set
Dq .

As suggested by Min et al. [49], most questions can be
answer by a small set of sentences. The topic-related doc-
uments in Dq contain a large amount noise sentences. To
avoid interference by noise information, we train a paragraph-
level classifier to filter out irrelevant context. Specifically, all
documents in Dq are split into paragraphs. The question-aware
paragraph representation is obtained as follows:

hpara = Transformer([CLS]q[SEP]para), (1)

where Transformer denotes a pre-trained language model
where the input sequence is the concatenation of question q
and candidate paragraph para, and hpara is the representation
of [CLS] which is pre-trained to summarize the latent mean-
ing of the input sequence. Then, it is fed into an output layer
for classification:

p(t) = sigmoid(FFN(hpara; θ)), (2)

where FFN(·; θ) denotes a θ-parameterized one-layer feed-
forward network, and p(t) is the probability distribution. The
training objective is designed as:

Lcls = −
1

N

∑
N

(y(t) log p(t) + (1− y(t)) log(1− p(t))), (3)

where N is the number of question-paragraph pairs, y(t) is
the label which is set to 1 when the paragraph contains the
evidence, and 0 otherwise.

With the trained classifier, we can evaluate the score of
each testing question-paragraph pair, since p(t) indicates the
paragraph is relevant or irrelevant to the topic of question.
The top ranked paragraphs to the question are selected by
thresholding the number of selected paragraphs, where the
threshold is a hyperparameter.

2We use a BERT-large-cased model fine-tuned on CoNLL-
2003, which is available on https://huggingface.co/dbmdz/
bert-large-cased-finetuned-conll03-english.

3We use the NLTK toolkit and the nouns are labeled by NN, NNS, NNP,
or NNPS, i.e., https://www.nltk.org/book/ch05.html.

4We use the everygrams function in NLTK to generate n-grams, i.e.,
https://www.nltk.org/api/nltk.html.
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Original question

Masked text

Document Titles

[Albany, New York,  Albany, Georgia, Georgia, …]

Will the Albany in Georgia reach a hundred thousand 
occupants before the one in New York?

Will the [M] in [M] reach a hundred thousand occupants 
before the one in [M]?

Fig. 5. Illustration of the mask mechanism. [M] denotes a blank character.
Documents Titles are examples of the searched titles by Topic Retriever. For
the original question, we replace the topic-related words (e.g., Albany and
New York) using [M]. Masked text denotes the masked question.

We split the selected paragraphs into sentences and generate
a small set of candidate sentences Etq = {s1, s2, · · · , sm},
which contains topic-related information to the question q.

2) Attribute Retriever: Given the candidate set Etq which are
topic-related to question q, the attribute retriever is designed
to retrieve a small set of sentences Eaq which are true evidence
with required attribute information to answer the question.

Intuitively, the attribute (e.g., area of ) is the key guide to
find true evidence from various sentences which describe the
topics. However, it is implicit in q. To alleviate this problem,
considering the question in Fig. 4, we assume that the attribute
area of is hidden in fit in, and employ a mask mechanism and
a deep encoder to map the question and evidence into a vector
space, where the potential associations between fit in and area
of can be captured by vector similarity.

First, a mask mechanism is designed to help the retriever
focus on the part of q that implies attribute information, rather
than being distracted by explicit topics. As shown in Fig. 5,
we create a mask word set Mq which contain words in the
document titles in Dq . Stop words are removed fromMq . We
mask question q by removing these mask words:

q∗ = {qi
∣∣|q|
1
, qi /∈Mq}, (4)

where qi is a word in question q and q∗ is the masked question.
Similarly, the mask mechanism converts each sentence si in
Etq as its masked version s∗i .

Then, the attribute retriever applies a dense encoder Enc(·)
to map any text into a fixed-size dense vector. We follow
Sentence-Transformer [50] to add a pooling operation to the
output of RoBERTa to embed input text as a vector. All
the masked sentences are represented as dense vectors and
indexed into a vector search space. Then, the masked question
is encoded as a query vector to search the top-k sentences of
which vectors are the closest to the query vector. We employ
the MEAN pooling strategy and the similarity of each sentence
si to question q, which is computed using dot product:

sim(q, si) = Enc(q∗)T · Enc(s∗i ). (5)

The training objective is to fine-tune the encoder so that rele-
vant pairs of questions and sentences have a higher similarity
than the irrelevant ones. For example, Can X fit in Y is closer
to the area of X/Y than the history of X/Y.

[Masked Q; Masked Evidence] [Origin Q; Origin Evidence]

Transformer-Encoder Transformer-Encoder

Pooling Pooling

Strategy Predictor Answer Predictor

concatenate

shared

Compare/Logic/Entail.. Yes/No

Fig. 6. Illustration of disentangled reasoning method, which contain a strategy
predictor and an answer predictor. These two predictors have different input
sequences with shared encoder. The strategy predictor is to predict implicit
reasoning strategy. The answer predictor is to predict the answer to the
question.

The training sample contains a question q, a pos-
itive evidence sentence s+, and n negative sentences
{s−1 , s

−
2 , · · · , s

−
l } randomly selected from Etq , and we opti-

mize the loss function as:

Lenc =

N∑
− log

esim(q,s+)

esim(q,s+) +
∑l

j=1 e
sim(q,s−j )

, (6)

where N is the size of the training samples.
3) Data Augmentation: It is expensive to search or label

gold evidence sentences for implicit questions. According to
the statistics of Geva et al. [8], the human performance in
finding a gold paragraph without question decomposition is
only 51.3% in terms of recall. To train a robust encoder, we
use multiple rounds of training and use the retrieval results
of the last round as the pseudo-label data to carry out data
augmentation. First, we train the encoder using the labeled
sentences as positive examples, and randomly select negative
sentences from the documents. Then, of the top-k similar
sentences to a question, sentences from the gold paragraphs are
used as pseudo positive data and the others as pseudo negative
data. The pseudo data is used to fine-tune the encoder in the
next round.

C. Disentangled Reasoning

Given question q and retrieved evidence sentences Eq =
{s1, s2, · · · , sk}, the disentangled reasoning method attempts
to form the answer by understanding the implicit strategy. As
shown in Fig. 6, our disentangled reasoning model contains
1) a strategy predictor to learn the latent reasoning strategy of
the question and 2) an answer predictor to conduct a strategy-
aware answer inference.

1) Reasoning Strategy Predictor: Intuitively, the reasoning
strategy is latent in the masked question and evidence sen-
tences. For example, given the question “Did X fit in Y” with
the several evidence sentences “the area of X is...” and “ Y
has the area of ...”, the predictor is expected to infer that the
reasoning strategy is size comparison.

In our method, we train a reasoning strategy predictor based
on the pre-trained language model. The masked question and
evidence sentences are concatenated as input sequence:

h∗ = Transformer([CLS]q∗[SEP]s∗1, s
∗
2, · · · , s∗k), (7)
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where the Transformer denotes the pre-trained language model
with a pooling layer to convert the input sequence as a
fixed-length vector h∗. Here, we employ the representation
of [CLS] as the pooling method, which is pre-trained to
summarize the latent meaning of the input sequence. Then,
a reasoning strategy predictor is built to predict the reasoning
strategy using a neural classifier:

p(s) = softmax(FFN(h∗; θ)), (8)

where FFN(·; θ) denotes a θ-parameterized one-layer feed-
forward network, and p(s) is the probability distribution of
the reasoning strategy types. In our method, the strategy of
the training data is annotate by a keyword matching method
(as detailed in Section IV-A). The predictor is trained by
minimizing the negative log probability of the ground-truth
strategy label:

Lstrategy = − 1

N

∑
N

C∑
i=1

y
(s)
i logp

(s)
i , (9)

where y(s) is the one-hot representation of the strategy type
labels, C is the number of types, and N is the number of
training samples.

2) Answer Predictor: We leverage the latent reasoning
strategy to help the answer inference. First, we learn the latent
question-evidence representation h based on the pre-trained
language model:

h = Transformer([CLS]q[SEP]s1, s2, · · · , sk), (10)

where Transformer is the shared encoder with reasoning
strategy predictor. We concatenate it with latent vector h∗

to infer the answer. For the boolean answer (i.e, yes or no),
we employ the binary classifier with the sigmoid function to
predicate the answer:

p(a) = sigmoid(FFN(h⊕ h∗; θ)), (11)

where FFN(·; θ) denotes a θ-parameterized one-layer feed-
forward network, and p(a) is the probability distribution of
answers. It is trained by minimizing the negative log proba-
bility of the ground-truth strategy label:

Lans = −
1

N

∑
N

(y(a) log p(a)+(1−y(a)) log(1−p(a))), (12)

where y(a) is the ground-truth answer label which is set to 1
when the answer is yes, and 0 otherwise. N is the number of
training samples.

We jointly train the reasoning strategy predictor and the
answer predictor:

L = Lans + λLstrategy, (13)

where λ is a combination parameter.
To sum up, Algorithm 1 shows high-level pseudo-code for

the DisentangledQA method in evidence retrieval and answer
inference.

Algorithm 1: The DisentangledQA Method
Input: question q, open-domain corpus C, epoch of data

augmentation N
// Disentangled Retrieval

1 Step1: Topic Retriever
2 Generate queries with multi-view query generator;
3 Retrieve titles using BM25 retriever;
4 Generate Dq by re-ranking titles;
5 Select topic-related sentences Etq from Dq by Eq. (3);
6 Step2: Attribute Retrieval
7 Sample training samples S for each question in the

training dataset;
8 for i = 1 to N do
9 Optimize the attribute encoder with S by Eq. (6);

10 Evaluate all candidate sentences using Eq. (5);
11 Select pseudo data and add them into S;
12 end
13 Obtain Eaq from Etq by Eq. (5);
// Disentangled Reasoning

14 Step3: Answer Inference
15 Train the strategy predictor and the answer predictor by

Eq. (13);
16 Get h and h∗ with Eaq by Eq. (10) and Eq. (7);
17 Predict the answer by Eq. (11);

Output: bolean answer (yes or no)

TABLE I
STATISTICS OF THE STRATEGYQA. # Question IS THE NUMBER OF

QUESTIONS, Avg.Len IS THE AVERAGE QUESTION LENGTH. Avg.Doc AND
Avg.Para DENOTE THE AVERAGE NUMBER OF DOCUMENTS AND

PARAGRAPHS TO ANSWER THE QUESTIONS, RESPECTIVELY. %Yes IS THE
PERCENTAGE OF QUESTIONS WHOSE ANSWER IS yes.

StrategyQA # Question Avg.Len Avg.Doc Avg.Para % Yes

Train 2,061 9.6 1.97 2.33 46.8%
Dev 229 9.7 1.95 2.30 46.7%
Test 490 9.8 - 2.29 46.1%

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of our method.
We first detail the experiment setting, including the dataset,
implementation, and the compared baselines. Then, we com-
pare the proposed method with different methods and show the
overall performance, followed by the ablation study, in-depth
analysis, and case study.

A. Datasets and Implementation

First, we evaluate the effectiveness of the proposed Dis-
entangledQA in answering implicit questions using Strate-
gyQA [8], which is a boolean QA dataset with implicit ques-
tions. To the best of our knowledge, this is the only implicit
QA dataset with a variety of complex question answering
strategies. It contains 2,290 question-answer pairs with anno-
tated facts, evidence paragraphs and question decomposition
for training and 490 questions for online testing. It also
provides a 90%/10% split of training data to get the in-house
training/development split.
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TABLE II
KEYWORDS FOR DIFFERENT REASONING STRATEGIES.

Strategy Keywords

comparison greater, less, smaller, higher, lower, longer, shorter...
binary same, identical, equal, different, difference, match...
numerical least, times, plus, multiplied, divided, positive...
logical or, all, also, both
entail contain, absent, overlap, included, within, excluded...

The statistics of the dataset are shown in Table I. The corpus
to answer the implicit questions in StrategyQA is an open-
domain Wikipedia dump5, which contains 5.98M Wikipedia
documents with 36.6M processed paragraphs. The answer is
Yes or No. In the training and development datasets, each
implicit question is labeled with the evidence and reasoning
strategy. Each example in the test dataset simply comprises a
question, and the answer, evidence, and reasoning strategy are
hidden. In the official evaluation, the participant methods are
compared with the accuracy of answers and the recall of the
top-10 retrieved paragraphs.

In our experiment, the topic retriever leverages the Python
Elasticsearch API6 to index all Wikipedia documents. In the
topic retriever, the query for each question is multi-view
queries designed in Section III-B1, the search domain is Title.
We train the attribute retriever using a fine-tuned Sentence-
Transformer7 and set the parameters as follows: the sequence
length is 128, the batch size is 256, the learning rate is 3e-
5, and the number of training epochs is 10. The selected
sentences are used for QA, and the paragraphs where these
sentences are located are used to evaluate Recall@10. The
disentangled reasoning model is built on RoBERTa∗, which is
a fine-tuned RoBERTa [37] model on DROP [51], 20Q8, and
BoolQ [52] by Geva et al. [8]. RoBERTa* is available online9.
For the reasoning strategy annotation, we extract the last step
of human-written question decomposition and perform key-
word matching. There are five classes of reasoning strategies,
i.e., comparison, logical, entail, binary and numerical. Table II
shows several examples of the used keywords, and all of the
used keywords are released10. We set the used parameters as
follows: the batch size is 16, the sequence length is 512, the
learning rate is 1e-5, the warm up rate is 0.1, and the number
of training epochs is 5.

Second, to verify that our method generalizes well to open-
domain QA task, we conduct experiments on the EntityQues-
tions [9] dataset, which contains 24 types of entity-centric
questions. The open-domain corpus for answering these ques-
tions is also the Wikipedia dump. It is a challenging dataset for
dense retrieval methods. As observed by Sciavolino et al. [9],
the dense retrieval method (i.e., Dense Passage Retrieval [5])
drastically underperforms the sparse BM25 baseline (49.7%
vs 72.0% on average), with the gap on some question pat-

5https://storage.googleapis.com/ai2i/strategyqa/data/
corpus-enwiki-20200511-cirrussearch-parasv2.jsonl.gz

6https://github.com/eladsegal/strategyqa/tree/main/elasticsearch index
7https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
8https://github.com/allenai/twentyquestions
9https://storage.googleapis.com/ai2i/strategyqa/models/2 boolq.tar.gz
10https://github.com/senticnet/DisentangledQA/tree/main/classification.

terns reaching 60% absolute. Note that EntityQuestions only
contains explicit questions with 24 explicit strategies, such
as “Where was [E] born?” and “Where is [E] located?”
([E] denotes an entity), and no implicit reasoning strategies
are required. As such, we employ the proposed Disentangle
Retriever on this dataset and compare our method with other
state-of-the-art retrieval methods.

We setup the experiments on EntityQuestions following the
official repository11. We also employ Python Elasticsearch
API to index all Wikipedia documents for the topic retriever.
Considering most of questions in EntityQuestions have formal
entities, we employ a lexical classifier12 to select top-5 docu-
ments, instead of a RoBERTa-based classifier. For training the
attribute retriever, we fine-tune a Sentence-Transformer and
set the parameters as follows: the sequence length is 128, the
batch size is 256, the learning rate is 2e-5, and the number
of training epochs is 3. In this experiment, we use the official
evaluation metrics, i.e., top-20 retrieval accuracy.

B. Baselines

We compare our method with the following baselines. Tra-
ditional methods directly retrieve paragraphs from the whole
Wikipedia corpus using BM25, then the question and the
retrieved top-10 paragraphs are fed into a RoBERTa-based
reader or a RoBERTa*-based reader to predict the answer.
The used queries for retrieval include:

• IR-Q [8] uses a query that consists of the non-stop words
of the original question.

• IR-D decomposes a question into several sub-questions
using BART [44] and initiates a separate query for each
decomposition. The retrieved paragraphs of all steps are
sorted by their retrieval scores.

We design a topic retriever to select a small set of documents
Dq . We re-implement the following baselines based on our
topic retriever.

• IR-QM employs the BM25 function to select the top-10
paragraphs for each question from Dq . All the selected
paragraphs are concatenated as evidence.

• Dense Passage Retrieval (DPR) [5] employs a dual
encoder to encode the questions and paragraphs as dense
vectors and the top-10 paragraphs which are the closest
to the questions are selected.

• Joint Retrieval jointly evaluates the evidence chain, fol-
lowing Yadav et al. [53]. In our implementation, any two
paragraphs retrieved by DPR are joined as an evidence
chain. A RoBERTa-based classifier is trained to select an
evidence chain.

• Semantic Retrieval [4] is a multi-grained evidence re-
trieval method based on RoBERTa, which jointly con-
siders the paragraph-level and sentence-level semantic
matching to select the evidence.

11https://github.com/princeton-nlp/EntityQuestions
12We employ the get_close_matches function defined in difflib (https:

//docs.python.org/3/library/difflib.html).
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TABLE III
OVERALL PERFORMANCE OF ALL THE METHODS ON THE DEVELOPMENT

SET OF STRATEGYQA. M DENOTES EVIDENCE SELECTION FROM
DOCUMENTS RETRIEVED BY OUR TOPIC RETRIEVER.

# Methods Recall@10 Accuracy

Open-domain Corpus
0 Human Performance 58.6% 87.0
1 MAJORITY - 53.3
2 RoBERTa-IR-Q 18.2% 57.2
3 RoBERTa*-IR-Q 18.2% 62.4
4 RoBERTa*-IR-D 19.5% 65.5
5 RoBERTa*-IR-QM 36.2% 63.3
6 RoBERTa*-DPRM 51.4% 64.2
7 RoBERTa*-Joint RetrievalM 51.6% 65.5
8 RoBERTa*-Semantic RetrievalM 48.4% 63.8
9 RoBERTa*-Disentangled RetrieverM 55.9% 66.8
10 DisentangledQA (Our) 55.9% 68.1

ORACLE Paragraphs
11 RoBERTa*-ORA-P - 70.7
12 RoBERTa*-ORA-P-D - 72.0
13 DisentangledQA (Our) - 73.8

TABLE IV
PERFORMANCE COMPARISON ON THE HIDDEN TESTING SET OF

STRATEGYQA. † DENOTES THE PUBLISHED RESULT AND ‡ DENOTES THE
RESULT REPORTED IN OFFICIAL LEADERBOARD.

Methods Recall@10 Accuracy

MAJORITY† - 53.9
ROBERTA*-∅ † [8] - 63.6
DPR for retrieval‡ 12.5% -
RoBERTa-IR-Q† [8] 17.4% 53.6
RoBERTa*-IR-Q‡ 17.3% 64.9
RoBERTa*-IR-D‡ [44] 17.4% 60.2
GPT-3 - 59.2
DisentangledQA 48.9% 66.1
DisentangledQA(ensemble) 48.9% 69.4

C. Overall Performance

1) Performance on StrategyQA: Table III summarizes the
results of all the methods on the development dataset of
StrategyQA. MAJORITY denotes the performance without
training, and ORACLE Paragraphs denote the question an-
swering with the golden paragraphs. The first group (#1-10) is
the open-domain implicit QA. We observe that the proposed
DisentangledQA achieves a significantly better performance
than the other baselines, both on retrieval and QA, with an
average performance gain of 21.1% and 4.9%, respectively.
This observation indicates the effectiveness of our method in
jointly leveraging topic, attribute and strategy information to
answer implicit questions.

Focusing on evidence retrieval, IR-Q and IR-D achieve poor
performance with an average recall of 18.6%, which affects the
follow-up QA. When equipped with a topic retriever, IR-QM

achieves 18% performance gain in terms of Recall@10, show-
ing that the disentangled topic information from the question
as a query is effective to reduce the search space. Moreover, a
topic retriever also benefits the other dense retrievers (#6-8),
with an average improvement of 28.3%. Our attribute retriever
(#9) achieved the best retrieval performance, indicating the
importance of attribute information in evidence selection.

In relation to QA accuracy, we observe that RoBERTa*-
IR-Q substantially outperforms RoBERTa-IR-Q with a gain
of 5.2%, indicating that fine-tuning on the related auxiliary
datasets is crucial. Compared with our method (#10), it is
observed that removing the strategy predictor (#9) leads to a
1.3% QA performance drop, indicating that understanding the
implicit reasoning strategy is helpful to inference the answer.
Moreover, considering the oracle setting with the golden
paragraphs, we compare DisentangledQA with the RoBERTa*
method, where the input sequence is ORA-P (concatenated
golden paragraphs, #11) and ORA-P-D (concatenated golden
evidence for decomposition sub-questions, #12), and we ob-
serve that our method (#13) achieves better performance, with
a 3.1% and 1.5% improvement, respectively. This observation
shows our method is effective, and it benefits from revealing
the latent reasoning strategy in answering implicit questions.

A comparison of the different methods on the hidden testing
dataset is shown in Table IV. The proposed DisentangledQA
achieves state-of-the-art performance in the leaderboard, indi-
cating its effectiveness.

2) Performance on EntityQuestions: Table V summarizes
the overall performance of different methods on EntityQues-
tions dataset. We compare our Disentangle Retriever with
sparse retriever (i.e., BM25) and dense retrievers (i.e., DPR
and REALM [54]). More specific, DPR(NQ) denotes the
DPR model trained on Nature Questions dataset [55], which
is a large-scale extractive QA dataset, and DPR(multi) de-
notes the DPR model trained on four QA datasets (i.e., NQ,
TriviaQA [56], WebQ [57], and TRECQA [58]) combined.
REALM adopts a pre-training task called salient span masking
(SSM), along with an inverse cloze task from Lee et al. [18].
We also evaluate the performance of BM25 and DPR based on
our topic retriever, which are denoted as BM25M and DPRM,
respectively.

It is observed that our method achieves best performance,
indicating our method generalizes well to explicit open-
domain QA. The main advantage of our approach is to
disentangle topics and attributes, which are denoted as entity
and question pattern in EntityQuestions dataset, respectively.
With a topic retriever, DPRM outperforms DPR(NQ) and
DPR(multi) by 26% and 19% on average, respectively, in-
dicating that disentangling topics and attributes is helpful
for dense retrievers. Our method achieves better performance
than DPRM, with an average performance gain of 0.8%,
indicating the effectiveness of attribute retriever. We observe
that the improvement from attribute retriever in StrategyQA is
more significant than that in EntityQuestions (i.e., 4.5% v.s.
0.8%). This shows that DPR can search evidence for explicit
questions, but cannot deal with implicit questions. Our method
can effectively retrieve the evidence of implicit questions.

D. Ablation Study
We conduct an ablation study on the development dataset

to understand how components affect the results. The results
are reported in Table VI. It is observed that removing topic re-
triever leads to 30% performance drop in terms of Recall@10,
indicating the importance of generating a small set of topic-
related sentences E(t) from the whole corpus C.
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TABLE V
OVERALL PERFORMANCE OF DIFFERENT METHODS ON THE TEST SET OF ENTITYQUESTIONS IN TERMS OF TOP-20 RETRIEVAL ACCURACY. NUM.

DENOTES THE NUMBER OF QUESTIONS IN DIFFERENT TYPE OF RELATIONS. BM25M AND DPRM DENOTE BM25 AND DPR BASED ON THE DOCUMENTS
RETRIEVED BY OUR TOPIC RETRIEVER.

Questions Num. BM25 DPR(NQ) DPR(multi) REALM BM25M DPRM Our Method

P106 What kind of work does [E] do? 1000 71.2 25.9 52.9 53.6 78.9 79.0 79.3
P112 Who founded [E]? 510 81.2 77.1 75.7 77.3 80.8 81.4 82.5
P127 Who owns [E]? 1000 78.4 60.7 63.8 73.6 78.2 79.6 81.2
P131 Where is [E] located? 1000 63.1 45.7 44.2 63.9 75.0 75.2 75.3
P136 What type of music does [E] play? 1000 48.7 37.4 36.8 42.6 52.7 53.2 53.9
P159 Where is the headquarter of [E]? 1000 85.0 70.0 72.0 70.4 84.9 85.7 86.5
P17 Which country is [E] located in? 1000 61.5 64.2 67.7 70.6 69.0 69.3 69.5
P170 Who was [E] created by? 870 72.6 54.1 57.7 56.8 70.9 71.6 72.3
P175 Who performed [E]? 1000 56.6 47.6 51.5 53.1 67.4 67.8 68.6
P176 Which company is [E] produced by? 1000 81.0 61.7 73.7 69.2 83.1 83.8 84.2
P19 Where was [E] born? 1000 75.3 25.4 41.8 52.9 80.7 81.9 82.1
P20 Where did [E] die? 1000 80.4 34.4 45.1 61.9 84.2 84.6 85.1
P26 Who is [E] married to? 1000 89.7 35.6 48.1 47.1 86.6 86.9 87.2
P264 What music label is [E] represented by? 1000 45.6 25.3 43.2 53.2 49.8 52.5 55.7
P276 Where is [E] located? 1000 84.9 74.9 77.3 77.1 84.2 85.1 85.7
P36 What is the capital of [E]? 886 90.6 77.3 78.9 91.7 89.7 90.1 90.5
P40 Who is [E]s child? 1000 85.0 19.2 33.8 39.7 87.1 88.2 89.8
P407 Which language was [E] written in? 646 86.2 77.1 82.5 81.9 88.5 89.1 89.7
P413 What is [E] famous for? 1000 74.3 75.7 71.5 53.8 83.2 84.9 86.4
P495 Which country was [E] created in? 1000 21.8 21.6 28.0 34.8 19.6 20.7 22.3
P50 Who is the author of [E]? 1000 73.0 75.7 77.8 77.2 78.3 79.6 80.2
P69 Where was [E] educated? 1000 73.1 26.4 41.8 38.6 74.1 74.5 74.5
P740 Where was [E] founded? 942 74.4 59.9 61.6 50.9 77.2 78.0 79.0
P800 What position does [E] play? 221 74.7 19.0 33.9 45.3 70.6 72.9 74.7

Macro-Average - 72.0 49.7 56.7 59.9 74.8 75.7 76.5
Micro-Average - 71.4 49.5 56.6 59.5 74.5 75.3 76.2

TABLE VI
ABLATION STUDY OF DISENTANGLEDQA ON THE DEVELOPMENT

DATASET.

Methods Recall@10 QA Accuracy

Full DisentangledQA 55.9% 68.1
w/o Topic Retriever 25.9% (-30.0%) 62.8 (-5.3)
w/o Attribute Retriever 51.6% (-4.3%) 63.3 (-4.8)
w/o Data Augmentation 52.8% (-3.1%) 64.6 (-3.5)
w/o Mask Mechanism 54.3% (-1.6%) 65.5 (-2.6)
w/o Strategy Predictor 55.9% 66.4 (-1.7)

It leverages the explicit topic information in the question and
effectively filters a large amount or irrelevant context, with a
high recall of true evidence for implicit QA. When attribute
retriever is removed, the performance of evidence retrieval and
QA accuracy decrease by 4.3% and 4.8, respectively. More-
over, it is observed that removing data augmentation in training
the attribute retriever leads to a 3.1% performance drop in
terms of Recall@10, indicating the importance of pseudo data
in training a robust attribute-aware encoder. We disentangle the
attribute information from the questions by employing a mask
mechanism to ensure the implicit attributes are not disturbed
by the explicitly mentioned topics. It is observed that removing
the mask mechanism slightly affects paragraph-level recall
by 1.6%, but significantly affects QA accuracy by 2.6. This
observation shows that the mask mechanism is useful for the
retriever to detect the true evidence from long semantic-related
documents. Lastly, we remove the strategy predictor, resulting
in a 1.7% QA performance drop, indicating that understanding
the implicit reasoning strategy is helpful to answer inference.

TABLE VII
RECALL OF GOLDEN DOCUMENTS WITH DIFFERENT QUERY SETS. CleanQ

DENOTES QUESTIONS WITHOUT STOP WORDS.

Recall All Found At Least 1 Found

@N 3 5 8 10 3 5 8 10

CleanQ 37.3 39.7 39.7 39.7 56.8 60.7 60.7 60.7
NER 29.5 30.1 30.1 30.1 45.9 46.3 46.3 46.3
NGram 41.1 43.4 43.4 43.4 61.1 64.2 64.2 64.2
Noun 40.4 42.7 42.7 42.7 63.3 65.9 65.9 65.9
Our 61.8 64.7 65.3 66.6 83.0 83.8 84.3 86.5
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Fig. 7. The trade-off between the number of selected paragraphs and recall
of golden paragraphs on the development set.

E. In-depth Analysis

The proposed method disentangles topic, attribute, and
strategy from the implicit question to benefit retrieval and
reasoning. We conduct an in-depth analysis of each component
for answering implicit questions.
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Fig. 8. Performance of attribute retriever. (a) QA accuracy of a different number of sentences, (b) Recall@10 of golden paragraphs with different pooling
methods; and (c) Different vector similarity measures. Aug. denotes data augmentation and the dashed line denotes the best performance achieved without
data augmentation.

1) Topic Retriever: We employ a multi-view query gen-
erator to retrieve documents which are related to the topics
of the question. Table VII reports the recall of the required
documents with different query sets and different numbers
of the retrieved documents (i.e., |Dq|). It is observed that n-
gram and nous are more effective than question and NER
as queries to retrieve the required documents. The multi-
view query set achieves the best performance, indicating that
it can effectively provide a more comprehensive query set
and improve document-level retrieval performance. For the
size of Dq , recall increases with an increase in size, but
the improvement is not significant when the size exceeds 5.
Considering the balance between effect and efficiency, the size
of Dq is set to 5. The recall of all required documents and at
least one required document achieved by our topic retriever is
83.8% and 64.7%, respectively.

Then, a paragraph-level classifier based on RoBERTa-base
model is trained to remove irrelevant paragraphs from Dq . We
set a threshold n to control the size of selected paragraphs for
each question. Fig. 7 shows the recall with varying number
of selected paragraphs in range 1 to 30. According to our
statistics, Dq contains 155.8 paragraphs on average, and recall
of golden paragraphs is 64.7% (i.e., the dashed line in Fig. 7).
We generate E(t)q by selecting top-20 paragraphs for each
question q, which reduces recall by 4.7% but removes 87.2%
of the candidate paragraphs. In practice, the number of para-
graphs to select can be dynamically controlled by adjusting n,
so that proper number of paragraphs can be selected depending
on the needs of recall and speed.

2) Attribute Retriever: We design the attribute retriever to
select the top-k sentences to answer the implicit questions. We
first compare the QA performance with a different number
of selected sentences in Eq . As shown in Fig. 8 (a), our
method achieves the best performance when k is set to 15. The
attribute retrieved is trained based on Sentence-Transform. We
compare the performance with different pooling methods and
different similarity functions. The pooling function has three
optional strategies: 1) CLS: using the output of the [CLS]
token, 2) MEAN: computing the mean of all the output vectors,
and 3) MAX: computing a max-over-time of the output vectors.

Fig. 8 (b) indicates that MEAN is a more effective pooling
method than CLS and MAX. Fig. 8 (c) shows that dot-product
similarity achieves a slightly better performance than cosine
similarity and is significantly better than Euclidean distance
and Manhattan distance.
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Fig. 9. Comparison with different λ in terms of the accuracy of strategy
prediction and answer prediction.

In our experiment, we employ the MEAN pooling method
and dot-product similarity to conduct dense retrieval. We also
evaluate the performance of data augmentation as shown in
Fig. 8 (b) and (c). It is observed that using pseudo examples
as augmentation data significantly improves the effect of the
attribute retriever.

3) Reasoning Strategy: In the training process, the com-
bination parameter λ is used to control the contribution of
strategy prediction and answer prediction. We vary λ in the
range of [0,1] and plot the performance of strategy accuracy
and QA accuracy in Fig. 9. It is observed that a too large
λ slightly improves the strategy accuracy but affects the QA
performance. Our method achieves the best QA performance
when λ is set to 0.4. For the strategy prediction of five
categories, the accuracy is 55.9% which shows that the latent
strategy vector h∗ defined in Eq (7) is representative of the
implicit reasoning strategy.

F. Case Study

We conduct case study to better understand the proposed
method. As shown in Fig. 10, we detail the outputs of our
method for answering the question “Did Football War last at
least a month?”. It is observed that the topic retriever is able to
find the correct documents, i.e., Football War and Month. The
attribute retriever can select sentences which are more related
to last at least while semantic retrieval tends to select wrong
sentences which contain the topic Football War. Our method
correctly predicts that the reasoning strategy is comparison,
which is helpful for answer inference. For the second question,
it is necessary to retrieve the element set X required for the
plant photosynthesis and the element set Y contained in the
atmosphere of Mars, and judge that “Does all the element in
X present in Y?”.
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Question 1: Did the Football War last at least a month?  Answer

BL

1. The Football War…colloquial: Soccer War…was a brief war 
fought between El Salvador and Honduras in 1969. 

2. Although the nickname “Football War” implies that the 
conflict was due to a football match, the causes of the war 
go much deeper.

Yes (×)

Our

Topic Retriever: documents entitled [Football War, Month, 
Football, War, Football Football]
Attribute Retriever:
1. Its duration is about 27.21222 days on average. 
2. The actual war had lasted just over four days, but it 

would…to arrive at a final peace settlement. 
Strategy Predictor: Comparison

No (√)

Question 2: Are all the elements plants need for photosynthesis 
present in atmosphere of Mars? 

Answer

BL
1. Photosynthetic organisms…food directly from carbon dioxid

e and water using energy from light.
2. ...CO2 is the main component of the Martian atmosphere.

No (×)

Our

Topic Retriever: documents entitled [Photosynthesis, 
Atmosphere of Mars, Atmosphere…]
Attribute Retriever:
1. The atmosphere of Mars consists of 96% carbon dioxide, 

…along with traces of oxygen and water.
2. Total photosynthesis …include the amount of…, rate at 

which carbon dioxide can be supplied to the chloroplasts to 
support photosynthesis, the availability of water, and …

Strategy Predictor: Entail

Yes (√)

Fig. 10. Case study of DisentangledQA. Golden documents are underlined.
Topic-related words are marked in blue, and attribute-related words are marked
in red. semantic retrieval and reasoning denotes the baseline method.

It was observed that the baseline method failed to retrieve
evidence of Y , and our method successfully retrieved evidence
containing X and Y and predicted the entail strategy, leading
to a correct answer. These examples show that implicit ques-
tion answering is challenging, because topics, attributes, and
strategies are entangled in implicit questions. It is difficult to
answer implicit questions by using the whole question directly.
Our method provides richer and more accurate guidance
information for each module by disentangling topic, attribute,
and reasoning strategy from the question, thus improving the
effectiveness.

V. CONCLUSION

In this paper, we propose DisentangledQA to answer im-
plicit questions with an open-domain corpus. To better answer
implicit questions, it disentangles the topic, attribute, and
reasoning strategy from the questions to guide the retrieval
and reasoning. The experiments on StrategyQA dataset show
that the performance of DisentangledQA improved observably
as a result of the underlying information of question and
outperforms all the published models on the leaderboard.
Moreover, the experiments on EntityQuestions dataset show
that our method is effective to deal with general open-domain
QA task. In the future, we would like to explore how to
leverage linguistic knowledge to mine the required attributes
in implicit questions, and how to exploit and encode latent
reasoning strategies more accurately.
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