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Instance-based Domain 
Adaptation via 
Multiclustering Logistic 
Approximation 

With the explosive growth in the number of online 

texts, we could easily collect a large amount of 

labeled training data from different source domains. 

However, a basic assumption in building statistical 

machine learning models for sentiment analysis is 

that the training and test data must be drawn from the 

same distribution. Otherwise, directly training a 

statistical model usually results in poor performance. 

Faced with the massive amount of labeled data from 

different domains, it is important to identify the 

source-domain training instances that are closely 

relevant to the target domain and make better use of them. In this work, we propose a 

new approach, called multiclustering logistic approximation (MLA), to address this 

problem. In MLA, we adapt the source-domain training data to the target domain via a 

framework of multiclustering logistic approximation. Experimental results demonstrate 

that MLA has significant advantages over the state-of-the-art instance adaptation 

methods, especially in the scenario of multidistributional training data. 

With the growing volume of text available via the Internet, we can easily obtain huge amounts of 
labeled training texts from different domains. But only some of them might be beneficial for 
training a target-domain-desired classifier for sentiment analysis. A lot of research has been pro-
posed to conduct domain adaptation for sentiment analysis,1,2 open-domain opinion mining, and 
sentiment analysis.3,4 
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As a special type of domain adaptation method for sentiment analysis, instance-based domain 
adaptation (instance adaptation for short) aims to identify the training samples that are most rele-
vant to the target domain and make better use of them. Consider the following example. We 
want to learn a laptop sentiment classifier in the absence of labeled laptop reviews. Instead, we 
can obtain a large set of labeled e-product reviews, which covers reviews from several kinds of 
e-products including phones and digital cameras. In this case, the performance of a sentiment 
classifier simply trained with all labeled reviews might be unsatisfactory because only a few 
samples in the training data address topics closely related to laptops. Therefore, methods are 
needed to identify and adapt the labeled reviews from different source domains (or subdomains) 
to obtain a classifier that performs well on the laptop domain. 

To address this problem, methods have been developed to conduct instance adaptation by re-
weighting the training instances and applying importance sampling. In the field of machine 
learning, instance adaptation was studied under the concepts of covariate shift, sample selection 
bias, and importance sampling. Most of the previous instance adaptation methods traditionally 
assume that the source-domain training data has just one underline distribution. 

However, in many NLP applications including sentiment analysis, we are usually faced with a 
large amount of labeled data that might come from multiple source domains. Even if the data 
comes from one source domain, it also might contain many subdomains with different patterns in 
distribution. For example, the reviews collected from multiple domains (such as movie, book, or 
e-product) are multidomain training data. Even if the training data might come from one domain, 
there are still many subdomains or categories. For example, if the reviews come from the e-prod-
uct domain, they might still cover several smaller subdomains (such as phones and laptops) and, 
therefore, have distinct differences in distribution. 

An in-target-domain logistic approximation (ILA) approach has been proposed for single-do-
main instance adaptation.5 On this basis, we propose a multiclustering logistic approximation 
(MLA) in this work, as an extension to ILA, to deal with domain adaption in case of multidistri-
butional training data. Moreover, we infer the instance weighting learning criterion based on the 
multinomial event model, which leads to more profound insights of instance-based domain adap-
tation. To fully evaluate MLA, we conduct experiments on two tasks including cross-domain 
sentiment analysis and cross-domain text categorization. The experimental results show that our 
MLA approach can significantly outperform the state-of-the-art instance adaptation methods, 
especially in the case of multidistributional training data. 

RELATED WORK 
In general, domain adaptation methods include feature-based domain adaptation, parameter-
based domain adaptation, and instance-based domain adaptation.1,6 Note that different methods 
have different settings. In this work, we focus on instance-based domain adaptation. 

Instance adaptation learns the importance of labeled data in the source domain by instance re-
weighting and importance sampling. The reweighted instances are then used for training a target-
domain model. In the machine learning community, instance adaptation is also known as the co-
variate shift or instance selection bias. This concept was first introduced in the field of econo-
metrics7 and then brought into the field of machine learning.8 The key problem in instance 
selection bias is density ratio estimation (DRE). 

There was a line of kernel-based methods to solve the DRE problem, such as kernel density esti-
mation,9 maximum entropy density estimation,10 kernel mean matching,11 etc. A KLIEP algo-
rithm was proposed to directly estimate the density ratio by using a linear model in a Gaussian 
kernel space.12 Parameters were learned by minimizing the K-L divergence between the true and 
approximated distributions.13,14 

A logistic regression model was used to learn the density ratio together with the classification 
parameters, under the multitask learning framework. 15,16 In the field of NLP, an instance selec-
tion and instance weighting approach via PU learning (PUIS and PUIW) was proposed for the 
task of cross-domain sentiment classification.17 An instance-based domain adaptation in NLP via 
in-target-domain logistic approximation has also been proposed.5 
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As mentioned above, in many applications in NLP, the source-domain training data may come 
from many subdomains and have different distributions. While most of the previous work con-
ducted domain adaptation in case of single-distributional training data. By contrast, in this work, 
we proposed a multiclustering logistic regression model to address this issue. 

MULTICLUSTERING LOGISTIC APPROXIMATION 

Logistic Approximation for Single Source-Domain Instance 
Adaptation 
In-target-domain logistic approximation (ILA) for instance adaptation from a single source do-
main has been introduced.5 This assumed that the target-domain data is generated as follows: 

• an instance x is first drawn from the source domain distribution ps(x); and 
• an in-target-domain selector ( )( 1 | ) 1/ (1 )

T xp d x e β−= = +  then adapts x from the source to 
the target domain, where d denotes a domain indicator (d = 1 represents the target do-
main, and d = 0 represents the source domain). 

The approximated target-domain distribution was then formulated as 
( )( ) ( 1 ) ( ) / (1 ?) ( )|

T x
t s sq x p d x p x a e p xβ−= = = + . 

The normalized in-target-domain probability ( )( ) / (1 )
T xw x a e β−= +  was used as the instance 

weight for training a weighted classification model after instance adaptation. Different instance 
weights can yield different target-domain approximated distributions. The instance weight can be 
learned by minimizing the statistical distance (such as K-L distance) between the target-domain 
true distribution ( )tp x  and the approximated distribution ( )tq x . 

However, when the training data contains many subdomains and has distinct distributions, ILA 
might lead to poor adaptation performance, especially when the gap between subdomains is 
large. 

Let us use an artificial example to illustrate the motivation. In Figure 1, the red dots denote the 
target-domain test data. The blue and black crosses denote the training data, which are drawn 
from two different distributions. In instance adaptation, we learn an in-target-domain selector 
and assign an in-target-domain probability as the weight to each training instance. The size of the 
cross denotes the weight. The crosses that are closer to the separating line will have larger 
weights. Figure 1 illustrates how ILA conducts instance adaptation. It treats the multidistribu-
tional training data as a single domain, and learns a single in-target-domain separating line. The 
crosses that are closer to the separating line will have larger weights. 
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Figure 1. An illustration of ILA instance adaptation for multidistributional training data. 

 
Figure 2. An illustration of MLA instance adaptation for multidistributional training data. 

Multiclustering Logistic Approximation 
Unlike the standard ILA, in this work we propose a multiclustering logistic approximation 
(MLA) to address this issue. Figure 2 shows how MLA works in this case. It first clusters the 
training data into several categories and treats each category as a single domain. Then, it learns 
the in-target-domain separating lines for each cluster, and conducts instance adaptation respec-
tively. A weighted combination of the instance weights learned in each cluster is finally utilized 
as the overall instance weight. In comparison with ILA, MLA can capture various patterns in the 
massive training data. Therefore, it would be more reasonable in case of multidomain or multi-
distributional instance adaptation. 

We first apply a clustering algorithm to cluster the training data into several subdomains. There-
after, we develop a multiclustering in-target-domain logistic approximation model to adapt data 
from different clusters in the manner of a weighted combination. 
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In MLA, the k-means clustering algorithm is employed to split the source domain data into k 
subdomains. The cosine distance is used as the similarity measure. After clustering, the cosine 
distance between different instances within a domain is small, while the distance between differ-
ent domains is large. 

Based on the  clusters of training data, we propose to conduct multiclustering logistic approxi-
mation. Let ( ) ( )

dsp x  be the distribution of the dth cluster of the training data, and ( ) ( )
dt

q x  be the 

(component) target-domain approximated distribution adapted from ( ) ( )
dsp x . We suppose the 

target-domain approximated distribution ( )tq x  in MLA is a weighted sum of ( ) ( )
dt

q x : 

( )
( )

1 1
( ) ( ) / (1 ) ( )

T
d

d d

k k
x

dt t d d s
d d

q x q x a e p xβη η −

= =

=  = +   (1)

in which da and dβ . are respectively the normalization factor and feature weight of the dth clus-
ter, and dη  is a tradeoff parameter controlling the importance of each cluster. The weighted en-
semble of the normalized in-target-domain probabilities 

( )

1
( ) / (1 )

T
d

K
x

d d
d

w x a e βη −

=

= +   (2)

will be used as sampling weights for training a weighted classification model. 

Under this assumption, the K-L distance between ( )tp x  and ( )tq x  can be written approximately 
as 

( )
1 1

( )
( )

1 1

( )
1 1 1 1

( || ) 1 / log( ( )) / ( ( ))

1/ ( ( )) / (( ( )) /1

( ) 1/
( ) (
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1
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t

d
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d i

d

t t
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d i

d

NK

dt t t t t
d i

NK
x

t t d s
d i

N NK K
t d

t d d x
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d

s t

KL p q N p x q x
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N log log

p x N e β

β
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η

η η
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−
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−
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≈
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  (3) 

The parameters are learned by minimizing ( || )t tKL p q  subject to the normalization constraint 

( )
1 1

( )
( )

( 1)

1( , ) ( || ) ( , )
(1 )

. . ( ) 1/ / (1 ) 1, 1, , .
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  (4) 

in which dN  is the number of training instances in the dth cluster. 

Similarly, we get the final cost function by solving da  analytically and plugging it back: 
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  (5) 

For each clustering, once the parameters da  and dβ  are learned, we could calculate the instance 
weights according to Equation (2). Based on this, we train an instance-weighted classifier for the 
cross-domain classification task. 
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EXPERIMENTAL STUDY 

Tasks, Datasets, and Experimental Settings 
To fully evaluate the performance of MLA, we conducted experiments on two NLP tasks: cross-
domain text categorization and cross-domain sentiment classification. 

For cross-domain text categorization, we use the 20 Newsgroups dataset for experiments. It con-
tains seven top categories, under which there are 20 subcategories. We use four top categories as 
the class labels, and generate source and target domains based on subcategories. Taking “sci vs 
talk” as an example, the top categories “sci” and “talk” are the class labels. The subcategories 
“med,” “elec” (under category “sci”), “guns,” and “mideast” (under category “talk”) are used as 
the multidistributional training data. Subcategories “crypt” (under category “sci”) and “misc” 
(under category “talk”) are used as the target-domain test data. 

For cross-domain sentiment classification, we randomly chose two domains from four 
mutidomain sentiment datasets as the source domain, and chose one from the remaining two do-
mains as the target domain. For example, “book + kitchen  dvd” represents that “book” and 
“kitchen” are the two subdomains in the source domain, and “dvd” is the target domain. It is 
worth pointing out that here that we only present the result of MLA when the number of subdo-
mains is two. Similar behaviors can be observed when the number of subdomains increases. 

In both tasks, unigrams and bigrams with term frequency no less than four are used as features 
for classification. We randomly repeat the experiments for 10 times and report the average re-
sults. The paired t-test18 is employed for significance testing, with a default significant level of 
0.05. 

The Comparison of System Performance 
The following systems are implemented for comparison: 

• No-adaptation: the standard approach using all training data without domain adaptation 
• KLIEP-Gaussian: the KLIEP model with a Gaussian kernel12 
• PUIW: the instance-weighting model via PU learning2 
• ILA: the standard in-target-domain logistic approximation algorithm5 

We compare the system performance on two tasks respectively. 

Text categorization: In Table 1, we can observe that in comparison with the No-adaptation sys-
tem, the improvements of KLIEP-Gaussian and PUIW are very slight. ILA is a bit more effec-
tive. But the effect is quite limited compared with its performance in single-domain instance 
adaptation.5 In contrast, MLA outperforms No-adaptation, KLIEP-Gaussian, PUIW, and ILA 
significantly. 

Sentiment classification: In comparison with No-adaptation, three instance adaptation methods 
(KLIEP-Gaussian, PUIW, and ILA) exhibit effective performance. ILA does not show signifi-
cant superiority when compared with KLIEP-Gaussian and PUIW. By contrast, MLA outper-
forms all the other methods significantly. 

In general, ILA does not yield significant improvements in comparison with KLIEP-Gaussian 
and PUIW, in multidistributional cases. It suggests that the effect of ILA is limited for multidis-
tributional instance adaptation. By contrast, the MLA algorithm is rather effective in this setting. 

Table 1. Multidomain instance adaptation performance of different systems on text categorization 

Dataset 
No- 
adaptation 

KLIEP- 
Gaussian 

PUIW ILA MLA 
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talk vs rec 0.809 0.821 0.826 0.851 0.857 

talk vs com 0.952 0.961 0.954 0.958 0.961 

sci vs talk 0.720 0.728 0.725 0.727 0.735 

sci vs com 0.727 0.718 0.728 0.725 0.738 

rec vs com 0.880 0.883 0.885 0.890 0.887 

rec vs sci 0.770 0.770 0.784 0.801 0.807 

Average 0.809 0.814 0.817 0.825 0.831 
 

Table 2. Multidomain instance adaptation performance of different systems on sentiment 
classification 

Dataset 
No- 
adaptation 

KLIEP- 
Gaussian 

PUIW ILA MLA 

book + dvd  
kitchen 0.797 0.809 0.802 0.810 0.818 

book + dvd  elec 0.733 0.782 0.772 0.778 0.791 

book + elec  
kitchen 0.84 0.846 0.847 0.846 0.854 

book + elec  dvd 0.801 0.807 0.811 0.811 0.818 

book + kitchen  
dvd 0.81 0.811 0.815 0.816 0.817 

book + kitchen  
elec 0.822 0.828 0.833 0.827 0.843 

dvd + elec  kitchen 0.85 0.851 0.852 0.853 0.854 

dvd + elec  book 0.789 0.79 0.798 0.798 0.800 

dvd + kitchen  
book 0.798 0.802 0.799 0.780 0.820 

dvd + kitchen  elec 0.814 0.820 0.819 0.814 0.842 

elec + kitchen  dvd 0.781 0.783 0.782 0.783 0.787 

elec + kitchen  
book 0.753 0.756 0.758 0.752 0.763 

Average 0.799 0.807 0.807 0.806 0.818 

Parameter Stability of the Clustering Weight 
In this part, we discuss the sensitivity of the domain-based tradeoff parameter in MLA. In Fig-
ures 3 and 4, we presented the results of eight datasets in two tasks. It can be seen that all the ac-
curacy curves are bimodal and stable. When dη  is relatively small, i.e., dη  < 0.5, the best 
accuracy is obtained around 0.1 to 0.4. When dη  becomes larger, the best accuracy is obtained 
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when dη  is located at 0.7 to 0.9. It suggests that our approach MLA inclines to choose more tar-
get-domain-likely samples from one domain, but less from the others. 

 
Figure 3. Sensitivity of the tradeoff parameter in MILA in sentiment classification. 

 
Figure 4. Sensitivity of the tradeoff parameter in MILA in text categorization. 

The Relation Between K-L Distance and Instance Adaptation 
Performance 
We further investigate the relation between the K-L distances and domain adaptation perfor-
mance. In Table 3, we report three kind of K-L distance between the data of source and target 
domain respectively: 

1. KLD-1 represents the K-L distance between source domain #1 and the target domain, 
2. KLD-2 represents the K-L distance between source domain #2 and the target domain, 

and 
3. KLD-3 represents the K-L distance between the source domains. 

Table 3. Domain adaptation performance of different systems on sentiment classification 

Dataset KLD-1 KLD-2 KLD-3 
No 
adaptation 

ILA MLA 

book + dvd  kitchen 31.48 31.98 19.15 0.797 0.810 0.818 

book + dvd  elec 31.44 31.59 19.66 0.733 0.778 0.791 

book + elec  kitchen 35.38 30.33 74.32 0.840 0.846 0.854 

book + elec  dvd 18.07 60.88 73.32 0.801 0.811 0.818 

book + kitchen  dvd 17.35 16.26 80.28 0.810 0.816 0.817 
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book + kitchen  elec 33.24 34.28 81.76 0.822 0.827 0.843 

dvd + elec  kitchen 36.83 30.24 73.65 0.850 0.853 0.854 

dvd + elec  book 56.54 60.52 71.15 0.789 0.798 0.800 

dvd + kitchen  book 19.99 101.24 51.14 0.798 0.780 0.820 

dvd + kitchen  elec 32.87 56.42 54.73 0.814 0.814 0.842 

elec + kitchen  dvd 46.44 52.96 49.10 0.781 0.783 0.787 

elec + kitchen  book 49.28 54.44 51.40 0.753 0.752 0.763 
 

Taking “book + kitchen  dvd” for example, KLD-1 is the K-L distance between “book” and 
“dvd,” KLD-2 is the K-L distance between “kitchen” and “dvd,” and KLD-3 is the K-L distance 
between “book” and “kitchen.” 

First, it can be seen that when the K-L distance between the two source domains is small (KLD-3 
< 10), the improvement of MLA is also limited. It shows that when the K-L distance between 
source domains is small, ILA and MLA exhibit competitive performance. The reason is that 
when KLD-3 is relatively small, the two source sub-domains have similar distributional differ-
ence. 

Second, when the K-L distance between the two source domains is relatively large (KLD-3 > 
40), we can observe MLA perform much better than ILA. Compared to the ILA method, the av-
erage improvements on the last ten subtasks are 1.3 percent. But it is also worth noting that when 
KLD-1 and KLD-2 are close to each other, the improvement is less than 1 percent, such as “book 
+ kitchen  dvd” and “dvd + electronics  kitchen.” By contrast, if the difference between 
KLD-1 and KLD-2 is large, the improvement is more significant, such as “dvd + kitchen  
book” and “dvd + kitchen  elec.” The reason is that if the distance between the distribution of 
the subdomains and target domain is large, the ILA model will assign large weights to few sam-
ples, while the weights of other samples in the source domain are close to zero. This might lead 
to the overfitting of domain adaptation. However, the MLA model could avoid the overfitting 
problem by tuning the parameter to assign large weights to more samples from the source do-
main whose distribution is much more similar to the target domain. 

This result confirms our motivation of MLA very well. When KLD-3 is small, i.e., the distribu-
tions of the two source domains are similar, the effects of ILA (viewing the two distributions as a 
whole distribution, and choosing samples from it) and MLA (choosing samples from the two dis-
tributions respectively) are similar. When KLD-3 is large, it means the difference between the 
two distributions is large. For MLA, it could tune the parameter to pay more attention to the 
source domain whose distribution is much more similar to the target domain and assign large 
weights to more samples from this source domain. 

CONCLUSIONS 
The traditional instance adaptation methods including in-target-domain logistic approximation 
(ILA) normally conducted domain adaptation for a single source domain. In this work, a multi-
clustering logistic approximation (MLA) model is proposed, to conduct instance adaptation for 
multidistributional-labelled training data, where the training data might come from many sub-
domains. MLA extends the ILA algorithm and is more suitable and more efficient in the multi-
distributional case. We conduct systematic experiments on the tasks of cross-domain sentiment 
classification and text categorization. The results indicate that MLA has significant advantages 
over traditional instance adaptation methods, especially when the gap between each subdomain 
in the training data is large. 
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