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A B S T R A C T

Knowledge graph completion (KGC) aims to infer missing facts based on the observed ones, which is significant
for many downstream applications. Given the success of deep learning and pre-trained language models (LMs),
some LM-based methods are proposed for the KGC task. However, most of them focus on modeling the text
of fact triples and ignore the deeper semantic information (e.g., topology contexts and logical rules) that is
significant for KG modeling. For such a reason, we propose a unified framework FTL-LM to Fuse Topology
contexts and Logical rules in Language Models for KGC, which mainly contains a novel path-based method
for topology contexts learning and a variational expectation–maximization (EM) algorithm for soft logical rule
distilling. The former utilizes a heterogeneous random-walk to generate topology paths and further reasoning
paths that can represent topology contexts implicitly and can be modeled by a LM explicitly. The strategies of
mask language modeling and contrastive path learning are introduced to model these topology contexts. The
latter implicitly fuses logical rules by a variational EM algorithm with two LMs. Specifically, in the E-step, the
triple LM is updated under the supervision of observed triples and valid hidden triples verified by the fixed
rule LM. And in the M-step, we fix the triple LM and fine-tune the rule LM to update logical rules. Experiments
on three common KGC datasets demonstrate the superiority of the proposed FTL-LM, e.g., it achieves 2.1% and
3.1% Hits@10 improvement over the state-of-the-art LM-based model LP-BERT in the WN18RR and FB15k-237,
respectively.
. Introduction

Knowledge graphs (KGs) have attracted extensive attention from the
rtificial Intelligence (AI) community as they store vast amounts of
eal-world knowledge of facts [1,2]. Each fact is normally represented
s a triple (ℎ, 𝑟, 𝑡), where h, r and t denote a head entity, a relation,
nd a tail entity, respectively, e.g., (Yao Ming, marriedTo, Ye Li). With
igh-quality KGs, many AI applications could achieve excellent ac-
uracy and explainable reasoning processes [3–5], such as question
nswering [6,7], language modeling [8,9], semantic reasoning [10,
1], recommendation systems [12,13], sentiment analysis [14,15], and
edical intelligence [16]. However, the knowledge of most KGs is in-

omplete, due to limited annotation resources and technologies, while
n incomplete KG cannot meet the information needs of divers down-
tream applications [17]. For such a reason, the task of knowledge
raph completion (KGC) is proposed to infer new valid hidden triples,
ased on the observed ones in a KG.
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ambria@ntu.edu.sg (E. Cambria).

Some KG embedding methods, such as TransE [18] and DistMult
[19], are proposed to embed entities and relations into a continuous
vector space. Then, they calculate the scores of triples to complete
reasoning. Meanwhile, to model the topology of KGs, some graph
convolution networks (GCNs) are proposed to fuse the neighbor infor-
mation of entities, such as R-GCN [20] and CompGCN [21]. Despite
the great success of these two types of methods, they only utilize either
individual triples or neighbor information, while the intrinsic semantics
of entities and relations is ignored by their algorithms. For example,
none of these methods take into account the actual semantics of the
entity Yao Ming in Fig. 1, i.e., he was an NBA player born in China,
which leads to insufficient information modeling and reasoning perfor-
mance. In light of this, some language model (LM) based KGC methods
are proposed [22–26], among which KG-BERT [22] and StAR [25] are
representative studies.
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Fig. 1. An example of fusing topology contexts and logical rules in language models.
They input the textual descriptions of entities and the relation of a
triple into LMs to calculate a score that is to model the plausibility of
this triple. They only model the local information of triples, whereas the
long-distance information association in KGs is ignored, e.g., topology
contexts and logical rules (see examples in Fig. 1). Both of the topology
contexts and logical rules play significant roles for KGC [27], because
the former focuses on the entity topological features of the graph; the
latter lays emphasis on the causal associations between relations.

However, fusing topology contexts and logical rules in LMs is chal-
lenging. Firstly, topology contexts in KGs are represented in the form
of a graph structure, which is obviously different from normal word
sequences that can be processed by LMs. Thus, one cannot use LMs
to directly model topology contexts. Secondly, logical rules of KGs are
composed of rule confidence and atomic formulas, containing relations
and variables, and representing abstract meanings, e.g., rule 𝛾1 in Fig. 1:
0.9 bornIn(X, Y)∧cityOf(Y, Z)⇒nationalityOf(X, Z). It is intractable to
fuse logical rules into LMs. On one hand, the number of predicates
of logical rules in KGs is very limited, and the semantics of rules
is expressed through their permutation. This is significantly different
from the natural language. Thus, LMs cannot directly model the logical
rules as well. On the other hand, there are no labeled logic rules with
semantic confidence as the supervision information of LMs.

To address the above issues, we propose a novel two-stage frame-
work to implicitly Fuse Topology contexts and Logical rules in
Language Models for KGC, termed FTL-LM. Specifically, for the learn-
ing of topology contexts, we firstly propose a heterogeneous random-
walk algorithm to generate diverse topology paths that comprehen-
sively considers various factors in KGs, including breadth-first sam-
pling, depth-first sampling and different relations. By omitting inter-
mediate entities, these topology paths are transformed into reasoning
paths, and their positive and negative instances are then sampled.
Afterwards, the strategies of mask language modeling and contrastive
path learning are utilized to model the semantic information of both
topology paths and reasoning paths. In addition, soft logical rule
distilling is introduced to fuse logical rules in LMs, where two LMs with
the same architecture but different parameters are utilized for triplet
254
modeling and rule modeling, respectively. A variational expectation–
maximization (EM) algorithm is proposed to iteratively optimize these
two LMs. In the E-step, the triple LM is updated under the supervision
of observed triples and valid hidden triples, verified by the fixed rule
LM. In the M-step, we fix the triple LM and fine-tune the rule LM to
update logical rules. Through the above strategies, both the topology
contexts and logical rules of KGs are implicitly fused in LMs. Our main
contributions are summarized as follows:

• A unified framework FTL-LM that fuses both topology contexts
and logical rules of KGs in LMs is proposed. To our best knowl-
edge, this is the first study that simultaneously integrates these
two types of information.

• A novel path-based method for the learning of topology contexts
is proposed, where we first generate topology paths with a het-
erogeneous random-walk algorithm, and then construct reasoning
paths and their positive and negative samples. Afterwards, mask
language modeling and contrastive path learning are utilized to
model the semantics of these topology contexts.

• Because of the intractability of directly fusing logical rules, a
variational EM algorithm is introduced to alternatively optimize
two LMs for triple modeling and rule modeling, respectively. By
using this soft distillation, logical rules of KGs are incorporated
into the LM for the first time.

• Experiments on two common KGC datasets demonstrate the su-
periority of our method, which shows that our FTL-LM surpasses
all current LM-based methods. Furthermore, the ablation study
demonstrates the effectiveness of each module in the FTL-LM
framework.

The rest of this paper is organized as follows: Section 2 introduces
the related work of the KGC task. The preliminary is given in Section 3.
Our proposed method FTL-LM is detailed in Section 4. Section 5 carries
out extensive experiments and analysis results on two commonly used
KGs. Finally, we give the conclusion and discuss the future work in
Section 6.
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2. Related work

Currently, many studies are carried out for the KGC task, which
can be mainly divided into four categories: fact-embedding, topology-
embedding, rule-enhanced and LM-based methods.

2.1. Fact-embedding methods

Fact-embedding methods only consider each fact triple with the
form of (h,r,t) in a KG as the basis. They mainly optimize randomly
initialized entity and relation representations through the preset strat-
egy for triple score calculation, among which translational distance
models and semantic matching models are the two most representative
types [27]. Translational distance models define the triple score by the
distance between the head entity and tail entity after a specific relation
translation. TransE [18] is the first and most popular model of this
type. It requires that the head entity representation is close to the tail’s
after relation translation of addition operation in the vector space R𝑑 ,
i.e., 𝐡 + 𝐫 ≈ 𝐭. Based on TransE, related methods have been proposed
nd achieved great success, such as TransH [28] and RotatE [29]. The
ormer introduces relation-specific hyperplanes to extend the relation
ranslation and the latter converts the addition operation in real space
f TransE into a rotation from head to tail entity in complex space.

Semantic matching models express the validity of triples by the
atching degree of entity and relation vectors in the embedded space

27]. For example, RESCAL [30] assigns a vector 𝐞 ∈ R𝑑 to each entity
and a matrix 𝐌 ∈ R𝑑×𝑑 to each relation to represent their intrinsic
semantics. And the triple validity is defined by a bilinear function
𝐞⊤ℎ𝐌𝑟𝐞𝑡 =

∑𝑑−1
𝑖=0

∑𝑑−1
𝑗=0 [𝐞ℎ]𝑖[𝐌𝑟]𝑖,𝑗 [𝐞𝑡]𝑗 . DistMult [19] utilizes a semantic

vector 𝐫 ∈ R𝑑 to simplify 𝐌 in RESCAL by assuming that it is a diagonal
matrix, i.e., 𝐌 = diag(𝐫). Based on DistMult, ComplEx [31] converts
embedding vectors in real space to complex space for better asymmetric
relations modeling. Although these fact-embedding methods are simple
and efficient, they only consider the triple information of KGs, resulting
in insufficient modeling and performance degradation.

2.2. Topology-embedding methods

To comprehensively embed the information of KGs, some topology-
embedding methods are proposed, which are mainly based on GCNs.
Their strategy is to iteratively aggregate information from neighbor
nodes to the target node to integrate local topology structures. R-
GCN [20] is the first work applying GCN to KGs, where relation
specific matrices are introduced to handle the heterogeneity of edges.
Meanwhile, the basis and block-diagonal decomposition are proposed
to avoid over-parameterization and over-overfitting. Moreover, VR-
GCN [32] and CompGCN [21] learn embeddings of both entities and
relations simultaneously for multi-relational KG. A variety of entity-
relation composition operations are utilized in CompGCN, through
which it is very efficient and can generalize to several of multi-
relational GCN methods. In general, these methods have achieved
excellent performance and are widely used because they are capable
of modeling topology contexts of KGs. However, the related works of
this type cannot effectively deal with the intrinsic semantics of entities
and relations. Besides, modeling high-level semantic associations in KGs
(e.g., logical rules) is also challenging for these methods. Last but not
least, since these topology-embedding models embed a fixed number of
entities and relations, they can simply process static KGC whose entities
and relations will not increase in the future. This significantly narrows
their application scopes, because to achieve a knowledgeable and
255

up-to-date KG, the triples continuously grow in the real world [33–35].
2.3. Rule-fused methods

Rule-fused methods mainly perform interpretable KGC by mining
semantic associations between relations and local structures in the
KG. Neural LP [36] is the first study of learning first-order logic
rules in an end-to-end differentiable manner. It models the parameter
and structure of rules by compiling reasoning tasks into sequences of
differentiable operations. Based on Neural LP, DRUM [37] extends the
rule learning and reasoning to a variable-length pattern by introducing
an additional empty relation. In this way, it can learn richer rules and
conduct more accurate reasoning. In order to learn topology contexts
and logic rules of KGs simultaneously, JSSKGE [38] employs graph
attention networks to aggregate the local structural information of
entities. Then, it utilizes soft logical rules implicated in KGs as an expert
to further rectify the embeddings. It can conduct KGC and rule learning
by a joint learning method.

Due to the open-world assumption of KGs [27], the above meth-
ods of one-time rule learning cannot fully reflect the real situation.
Therefore, some iterative models for rule learning and reasoning are
proposed. For example, pLogicNet [39] combines the KG embedding
and rule learning in a variational EM framework. In the E-step, a
fact-embedding model is used for inferring missing triples, while in
the M-step, the weights of logic rules are updated based on the ob-
served and predicted triples. Similarly, RNNLogic [40] introduces a rule
generator as well as a reasoning predictor for iterative optimization.
In each iteration, the reasoning predictor is first updated to explore
some logic rules. And then high-quality rules are selected with both
the rule generator and reasoning predictor via posterior inference.
Finally, the rule generator is updated under the supervision of these
high-quality rules. In general, these rule-fused methods have great
application potential due to its interpretable advantages, but are limited
by the scalability of rule learning. Besides, they are usually difficult to
effectively integrate with other features of KGs to complete accurate
reasoning.

2.4. LM-based methods

To take into consideration the inherent semantics of entities and re-
lations for better representation, some text-enhanced methods are pro-
posed. These methods usually add the representations of text descrip-
tions on the basis of fact-embedding methods. Then, they are optimized
by the strategy of joint learning, such as TEKE [41] and DKRL [42].
In recent years, pre-trained language models, e.g., BERT [43] and
RoBERTa [44], have achieved great success in natural language pro-
cessing (NLP) tasks [45,46]. Naturally, they can be transferred to the
KGC task. KG-BERT [22] concatenates the text descriptions of a head
entity, a relation and a tail entity as the input of BERT, and takes
the final [𝙲𝙻𝚂] representation as embedded vector of the target triple.
Then, it is passed into a two-way classifier to determine whether the
triple is plausible or not. To enhance the representation of structured
knowledge in the textual encoder, StAR [25] partitions each triple
into two asymmetric parts as in a translation-based graph embedding
approach, and encodes both parts into contextualized representations.
Both a deterministic classifier and a spatial measurement for the learn-
ing of representations and structures are then employed. Afterwards,
multi-task learning for KGC with LMs is proposed. For example, MTL-
KGC [23] introduces link prediction, relation prediction and relevance
ranking simultaneously. LP-BERT [26] conducts multi-task pre-training
for KGC, where not only the original mask language modeling is
utilized, but also mask entity modeling and mask relation modeling
are introduced. All these methods have achieved excellent performance
through the introduction of structure knowledge. However, the mod-
eling structure of them is only limited to the triple level, which fails
to capture the long-distance structure semantics in KGs, e.g., topology

contexts and logical rules.
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To overcome the defects of current LM-based methods, we propose
a unified framework FTL-LM that fuses both topology contexts and
logical rules of KGs in LMs. It can be viewed as an extension of the
general LM-based methods that additionally incorporates the modeling
information of topology-embedding methods and rule-fused methods.
Different from the conventional topology-embedding methods that uti-
lize GCNs, we propose a novel path-based method for the learning of
topology contexts using LMs. Besides, for the rule fusion, a variational
EM algorithm is introduced to alternatively optimize two LMs for triple
modeling and rule modeling, respectively. These specific improvements
allow LMs to indirectly achieve the purpose of fusing topology contexts
and logical rules.

3. Preliminary

3.1. Knowledge graph and topology contexts

A knowledge graph can be formally expressed as:  = { ,, 𝑜},
where  and  denote the sets of entities and relations, respectively.
𝑜 ⊂  ×  ×  is the observed triples. As the open-world assumption
(OWA) states that KGs contain only true facts and non-observed facts
can be either false or just missing [27,47], so there exists valid hidden
triples, we formalize as 𝑢 (𝑢 ⊂ ×× , 𝑜∩𝑢 = ∅). The text descrip-
tions of entities and relations can be viewed as  = {𝑠𝑒1, 𝑠

𝑒
2,… , 𝑠𝑒

||}
and  = {𝑠𝑟1, 𝑠

𝑟
2,… , 𝑠𝑟

||

}, where | ⋅ | denotes the number of elements.
𝑠𝑒𝑖 and 𝑠𝑟𝑖 are sentences composed of different numbers of word tokens,
i.e., 𝑠𝑖 = [𝑤1, 𝑤2,… , 𝑤𝑛].

There are two main types of topology contexts in KGs: local and
long-distance topology contexts [48]. The local topology contexts rep-
resent the most basic graph features of an entity, which can be mod-
eled by processing triples in the form of (ℎ, 𝑟, 𝑡). Although some fact-
embedding methods achieve great performance using this kind of topol-
ogy [18,29], they are not sufficient for modeling the comprehensive
semantics of KGs. Long-distance topology contexts model for longer
topology in KGs, such as the path in Fig. 1: (Yao Ming, marriedTo, Ye
Li, bornIn, Shanghai, placeIn, China). It has more complex and richer
semantics. For more accurate KG embeddings, both the two types of
topology contexts are needed.

3.2. Logical rules in KGs

The general logical rules connect the causal relationship between
a premise and a hypothesis through implication symbols, i.e., premise
⇒ hypothesis. The premise and hypothesis are all composed of atoms
that are facts connecting variables or constants by a predicate. Due
to the particularity of KG structures, we introduce the Horn rule [49]
as it is tractable and expressive [50,51]. Each atom in Horn rules is
represented as a predicate (relation in KG) connecting two variables,
e.g., bornIn(X,Y). Meanwhile, it limits premise to a list of atoms and
hypothesis to an atom, which are called rule body and rule head respec-
tively. Furthermore, for the convenience without the loss of generality,
the closed Horn rule requires its rule body to connect transitively by
shared variables, where the first and the last variable are the same
as the counterpart of the rule head. To model the uncertainty, a
confidence 𝜖 ∈ [0, 1] is usually introduced for each Horn rule. The
length of Horn rules is the number of atoms in the rule body. An
example closed Horn rule with length 2 is shown below:

𝜖, 𝑏𝑜𝑟𝑛𝐼𝑛(𝑋, 𝑌 ) ∧ 𝑐𝑖𝑡𝑦𝑂𝑓 (𝑌 ,𝑍) ⇒ 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑂𝑓 (𝑋,𝑍), (1)

where bornIn(X, Y) ∧ cityOf(Y, Z) is a rule body and nationalityOf(X,
Z) is a rule head. By substituting the variables with concrete entities
in KGs, we can obtain a ground Horn clause corresponding to the
original Horn rule. For example, a ground Horn clause of rule (1) can be
bornIn(Yao Ming, Shanghai)∧cityOf(Shanghai, China)⇒nationalityOf(Yao
256

Ming, China). t
Table 1
Notations used in the paper.

Symbol Description

 The knowledge graph
 ,, 𝑜 The set of entities, relations, observed triples
𝑢 Hidden triples
𝛼, 𝛽 Weights for DFS and BFS in heterogeneous random-walk
𝜃 Attenuation coefficient in heterogeneous random-walk
𝑝 A topology path
𝑝ℎ , 𝑝𝑡 Head part and tail part of the path 𝑝
𝐩ℎ ,𝐩𝑡 Embeddings of 𝑝ℎ and 𝑝𝑡 via LMs
𝑝𝑟 The reasoning path of 𝑝ℎ
𝑝𝜌𝑟 , 𝑝

𝜂
𝑟 The positive instance and negative instance of 𝑝𝑟

𝐩𝑟 ,𝐩
𝜌
𝑟 ,𝐩

𝜂
𝑟 Embeddings of 𝑝𝑟, 𝑝

𝜌
𝑟 and 𝑝𝜂𝑟 via LMs

𝜏 Contrastive temperature
𝛾, 𝛤 A logical rule and a rule set of the KG 
𝑃𝑤 , 𝑄𝑣 The distribution for observed triples and hidden triples

4. Methodology

In this section, we will introduce our proposed FTL-LM model for
KGC, which mainly contains four technical components: topology con-
text learning, soft logical rule distilling, triple embedding, and overall
process and training regime. The main architecture is illustrated in
Fig. 2 and the notations used in the paper are summarized in Table 1.

4.1. Topology context learning

Directly fusing long-distance topology contexts into LMs is in-
tractable because there is a natural representation gap between the
complex topology and the natural language processed by LMs. Thus,
we refer to the strategy of random walks [52,53] used in many
homogeneous graphs to generate paths and then use them as implicit
representation of topology contexts. Specifically, suppose the current
sampled path is 𝑝𝑖, we sample the next neighbor for path growth by
the following probability:

𝑃𝑟
(

(𝑟𝑗 , 𝑒𝑗 )|𝑝𝑖
)

=
𝛷(𝑝𝑖, 𝑟𝑗 , 𝑒𝑗 )

∑

(𝑟𝑘 ,𝑒𝑘)∈𝑝𝑖,−1
𝛷(𝑝𝑖, 𝑟𝑘, 𝑒𝑘)

, (2)

where 𝑝𝑖,−1 denotes the last entity of path 𝑝𝑖 and  is the relation-entity
pair neighbor of the target entity. As Fig. 3 shows, the current path
has the last entity 𝑒3 and its neighbors include (𝑟9, 𝑒4), (𝑟8, 𝑒5), (𝑟6, 𝑒6)
and (𝑟7, 𝑒7). 𝛷 is the function to calculate the sample probability of
eighbors, which is defined as:

(𝑝𝑖, 𝑟𝑗 , 𝑒𝑗 ) = (𝛼 + 𝛽) ⋅ 𝜙(𝑝𝑖, 𝑟𝑗 ). (3)

imilar to node2vec [53], 𝛼 and 𝛽 denote weights for the neighbor
odes under depth-first sampling (DFS) and breadth-first sampling
BFS), respectively. Since we have limited the sampling range to neigh-
ors, 𝛼 is set to a constant value of 1. 𝛽 indicates the degree to
hich the model pays attention to BFS. As Fig. 3 shows, the current
eighbors 𝑒4 and 𝑒5 are connected with sampled nodes so they can
lso be viewed as BFS neighbors. A larger value of 𝛽 means that the
ampling process will pay more attention to 𝑒4 and 𝑒5, indicating that
he model generally focuses more on the local structures of KG. 𝜙(𝑝𝑖, 𝑟𝑗 )
epresents the semantic relevance between a current path 𝑝𝑖 and the
elation of a sample neighbor 𝑟𝑗 . Formally, 𝜙(𝑝𝑖, 𝑟𝑗 ) = cos(𝐩𝑖, 𝐫𝑗 ) where
𝑖 and 𝐫𝑗 denote the embeddings of the current path and the neighbor
elation, respectively. SimCSE [54] is utilized for computing 𝜙(𝑝𝑖, 𝑟𝑗 ), as
t has modeled the semantic relevance between two sentences through
ontrastive learning. While add a new neighbor for the path, the
elation semantics is updated:

𝑖 = 𝜃 ⋅ 𝐩𝑖 + (1 − 𝜃) ⋅ 𝐫𝑗 , (4)

here 𝜃 ∈ [0, 1] represents the proportion for retained information of
he previous sampled path.
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Fig. 2. The overall architecture of FTL-LM, which mainly contains two parts: topology context learning and soft logical rule distilling. The former models topology paths and
reasoning paths involving topology contexts through MLM loss and contrastive loss. The latter softly distils the logical rules into the LM by a variational EM algorithm, where
orange arrows indicate to preliminarily search rules and generate hidden triples. The blue and red arrows denote the process of E-step and M-step, respectively.
Fig. 3. An example for the topology path generation by the heterogeneous random-
walk. The orange part indicates the sampled items of the path while the blue ones
represent the possible samples in the current step. The gray part indicates the entities
or relations that are not sampled.

And the latter half of the equation represents the information trans-
formation after adding a new relation and an entity. Generally, the
heterogeneous random-walk algorithm for topology path generation
can be summarized as Algorithm 1. In this way, we have collected
sampled topology paths, which can implicitly reflect long-distance
topology contexts of the KG. So LMs can learn topology contexts by
modeling these paths. We carry out two tasks for the joint optimization:
mask language modeling and contrastive path learning.

Mask Language Modeling. For a topology path 𝑒1
𝑟1
←←←←←←←←←→ 𝑒2

𝑟2
←←←←←←←←←→ ⋯

𝑟𝑙
←←←←←←←←→ 𝑒𝑙+1

of length 𝑙, we replace all entities and relations with corresponding text
descriptions as the input to LMs, i.e.,

[

[𝙲𝙻𝚂], [𝚎𝟷], [𝚂𝙴𝙿], [𝚛𝟷], [𝚂𝙴𝙿], [𝚎𝟸],
[𝚂𝙴𝙿],… , [𝚎𝚕+𝟷], [𝚂𝙴𝙿]

]

where [𝚂𝙴𝙿] represents the split symbol. [𝚎𝚒] and
[𝚛𝚓] denote word sequences of entity 𝑒𝑖 and relation 𝑟𝑗 . For modeling
these topology paths, we utilize the strategy of word masking to fine-
tune LMs on KGs. Word masking was firstly proposed in BERT [43]
to learn the semantic representations. To enable LMs to model the
topology context of KGs, the whole words of the relation or the first
several words of the entity are selectively masked out. We select the
text of an entity (except for the first and the last entities in a topology
path) or a relation to mask each time until all masked words reach 15%
tokens in the topology path. Similar to BERT, 80% of masked words are
replaced with a [𝙼𝙰𝚂𝙺] flag, 10% are substituted with a random token
and the others remain unchanged.

Contrastive Path Learning. The above mask language modeling only
considers existing paths of KGs. To further reflect the real or non-
existent topology contexts in embeddings, we carry out the contrastive
path learning to preserve the semantic information. To achieve this,
257
Algorithm 1: The heterogeneous random-walk algorithm for
topology paths generation.

Input: the knowledge graph , number of topology path 𝑀 ,
min path length 𝑁𝑚𝑖𝑛, max path length 𝑁𝑚𝑎𝑥.

Output: the topology path set  .
1 while len() < 𝑀 do
2 𝑙 ← sample an integer in [𝑁𝑚𝑖𝑛, 𝑁𝑚𝑎𝑥];
3 path 𝑝 ← sample a triple in 𝑜;
4 path embedding p ← embed the relation of 𝑝 using SimCSE;
5 while 𝑙𝑒𝑛𝑝𝑎𝑡ℎ(p) < 𝑙 do
6 Get neighbors  for last entity 𝑝−1 from ;
7 if len( ) = 0 then
8 𝑏𝑟𝑒𝑎𝑘;
9 Calculate the weight for each pair (𝑟, 𝑒) ; ⊳ Eq. (3)
10 (𝑟𝑗 , 𝑒𝑗 ) ← sample neighbor with the weights;
11 𝑝 ← add (𝑟𝑗 , 𝑒𝑗 ) to 𝑝;
12 Update the path embedding p by Eq. (4) ; ⊳ Eq. (4)
13  ← add 𝑝 to  ;
14 Return topology path set  .

first, we have limited the implementation of above mask language
modeling. Each topology path 𝑒1

𝑟1
←←←←←←←←←→ 𝑒2

𝑟2
←←←←←←←←←→ ⋯

𝑟𝑙
←←←←←←←←→ 𝑒𝑙+1 is divided into

two parts: head part 𝑒1
𝑟1
←←←←←←←←←→ 𝑒2

𝑟2
←←←←←←←←←→ ⋯

𝑟𝑙
←←←←←←←←→, and a tail part 𝑒𝑙+1, respectively.

We only mask entities or relations in the head part, excluding the first
and last item, i.e., 𝑒1 and 𝑟𝑙 of the example.

Then, we introduce the reasoning path for the head part of topology
path, which only keeps the first entity and omits other intermediate
entities, i.e., 𝑒1

𝑟1
←←←←←←←←←→

𝑟2
←←←←←←←←←→ ⋯

𝑟𝑙
←←←←←←←←→. In fact, the information represented by

the reasoning path in this form is largely equivalent to the head part
of the corresponding topology path, because the later can be obtained
by the iterative inference of the former in KGs. Moreover, through
such a transformation, the confidence of logic rules can be effectively
calculated by LMs, which is detailed in Section 4.2. By the iterative
inference over a reasoning path, the last entity (the reasoning tail) can
be obtained, i.e., 𝑒𝑙+1. From this point of view, we define the positive
contrastive instance for the anchor reasoning path: both share the major
topology contexts and have the same reasoning tail. We can realize this
by a simple strategy that discards some beginning parts of the original
path. In this way, the positive contrastive instance can be 𝑒2

𝑟2
←←←←←←←←←→

𝑟3
←←←←←←←←←→

⋯
𝑟𝑙
←←←←←←←←→ or 𝑒3

𝑟3
←←←←←←←←←→

𝑟4
←←←←←←←←←→ ⋯

𝑟𝑙
←←←←←←←←→ and other similars. For negative contrastive

instance, we replace one of the relations of the anchor reasoning path
with a random relation that ensures the new path never appear in the

KGs. For example, changing 𝑟2 to another relation: 𝑒1
𝑟1
←←←←←←←←←→

𝑟′2
←←←←←←←←←→ ⋯

𝑟𝑙
←←←←←←←←→.

Consequently, the original reasoning tail cannot be reached by the
iterative inference in a negative contrastive instance.
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Formally, a topology path 𝑝 has a head part 𝑝ℎ and a tail part 𝑝𝑡,
which are represented as 𝐩ℎ and 𝐩𝑡 by LMs. The reasoning path 𝑝𝑟 cor-
responds to 𝑝ℎ. 𝑝𝑟 has a positive contrastive instance 𝑝𝜌𝑟 and a negative
counterpart 𝑝𝜂𝑟 . They are embedded as 𝐩𝑟, 𝐩

𝜌
𝑟 and 𝐩𝜂𝑟 respectively. For

mask language modeling, the classical cross entropy loss is carried out
to optimize:

𝑀𝐿𝑀 =
∑

𝑝

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
−𝑦𝑝𝑖,𝑗 log �̂�

𝑝
𝑖,𝑗 , (5)

here 𝑛 is the input length and 𝑚 is the number of tokenized tokens
f LMs. 𝑦𝑝𝑖,𝑗 and �̂�𝑝𝑖,𝑗 denote the actual label and the predict label of the
ord tokens in path 𝑝, respectively. For the contrastive path learning,

he infoNCE [55,56] loss is utilized:

𝐶𝑃𝐿 =
∑

𝑝𝑟

− log 𝑒sim(𝐩𝑟 ,𝐩
𝜌
𝑟 )∕𝜏

𝑒sim(𝐩𝑟 ,𝐩
𝜌
𝑟 )∕𝜏 +

∑

𝐩𝜂𝑟 𝑒
sim(𝐩𝑟 ,𝐩

𝜂
𝑟 )∕𝜏

, (6)

where 𝜏 is the hyperparameter of contrastive temperature. sim(𝐱, 𝐲) =
𝐱⊤𝐲

‖𝐱‖⋅‖𝐲‖ is the cosine similarity of two vectors. In the batch training, all
negative reasoning paths of an anchor path and other anchor ones are
as collected as negative instances. For more comprehensive modeling,
the contrastive score sim(𝐩𝑟,𝐩

𝑝
𝑟 ) of the positive pair in Eq. (6) is replaced

as: 1
3 [sim(𝐩𝑟,𝐩

𝑝
𝑟 ) + sim(𝐩𝑟,𝐩ℎ) + sim(𝐩𝑟,𝐩𝑡)]. In this way, the abstract

reasoning path and the head part of the topology path should have a
similar semantic representation. Meanwhile, the reasoning path and the
tail part are also similar in embedding space, by which the KGC can be
achieved indirectly, because the query of KGC is actually a reasoning
path of length 1, for example, reasoning path ℎ

𝑟
←←←←←→ corresponds to the

query (ℎ, 𝑟, ?). We jointly optimize LMs for topology context learning by
combining the above two losses:

𝑇𝐶𝐿 = 𝑀𝐿𝑀 + 𝐶𝑃𝐿. (7)

4.2. Soft logical rule distilling

Because of the intractability of explicitly fusing logical rules in LMs,
we introduce the Markov logic network (MLN) [57] to conduct soft
logical rule distilling with the inspiration of pLogicNet [39]. For a
given KG  = { ,, 𝑜} and its hidden triples 𝑢, different values of
observed and hidden triples form their corresponding random variables
𝑜 and 𝑢. (ℎ,𝑟,𝑡) = 1 if triple (ℎ, 𝑟, 𝑡) if true, otherwise (ℎ,𝑟,𝑡) = 0.
Suppose there is a rule set 𝛤 , for an arbitrary rule 𝛾 ∈ 𝛤 , it may have
several groundings in the KG, i.e., 𝑔(𝛾) = {𝑔1𝛾 , 𝑔

2
𝛾 ,…}. Each grounding

𝑔𝑖𝛾 replaces the variables of the rule with specific entities, which can be
referenced to Section 3.2. The body (𝑏) and head (ℎ) of the grounding
can be transformed into the corresponding reasoning path 𝑝𝑟,𝛾 𝑖 ,𝑏 and
𝑝𝑟,𝛾 𝑖 ,ℎ, for example, 𝑌 𝑎𝑜 𝑀𝑖𝑛

𝑏𝑜𝑟𝑛𝐼𝑛
←←←←←←←←←←←←←←←←←←←←←←←←←→

𝑐𝑖𝑡𝑦𝑂𝑓
←←←←←←←←←←←←←←←←←←←←←←←←←←→ and 𝑌 𝑎𝑜 𝑀𝑖𝑛

𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑂𝑓
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

respectively. Then the semantic confidence of rule 𝛾 can be calculated:

𝜖𝛾 =
1

|𝑔(𝛾)|
∑

𝑔𝑖𝛾∈𝑔(𝛾)

𝐍𝐨𝐫𝐦
(

sim(𝐩𝑟,𝛾 𝑖 ,𝑏,𝐩𝑟,𝛾 𝑖 ,ℎ)
)

, (8)

where 𝐍𝐨𝐫𝐦 is the normalization function to convert the value range
of cosine similarity [−1,1] to [0,1]. Based on learned rules, the joint
probability of all observed ones can be calculated by the Markov logic
network [57]:

𝑃𝑤(𝑜) =
1

𝑍(𝑤)
exp

[

∑

𝛾∈𝛤
𝜖𝛾
(

∑

𝑔𝑖𝛾∈𝑔(𝛾)

𝜓(𝑔𝑖𝛾 )
)

]

, (9)

where 𝑍(𝑤) is the partition function summing over all possible variable
groundings. 𝜓(⋅) ∈ {0, 1} denotes the discriminant function that is used
o calculate whether a rule ground is correct. Directly calculating and
aximizing this joint probability is demanding, because it requires to

ntegrate over all possible values of 𝑜 to compute the partition function
258

𝑍(𝑤). i
Thus, we introduce the evidence lower bound of its log-likelihood:

log𝑃𝑤(𝑜) ≥ 𝐸𝐿𝐵𝑂(𝑄𝑣, 𝑃𝑤)

= log𝑃𝑤(𝑜) −𝐊𝐋
[

𝑄𝑣(𝑢) ∥ 𝑃𝑤(𝑢|𝑜)
]

= E𝑄𝑣(𝑢)
[

log𝑃𝑤(𝑜,𝑢) − log𝑄𝑣(𝑢)
]

,

(10)

where 𝑄𝑣(𝑢) is the variational distribution of the latent variables
𝑢. 𝐊𝐋 denotes the KL divergence and the equality holds when KL
divergence is 0, i.e., the variational distribution equals to the true
posterior distribution: 𝑄𝑣(𝑢) = 𝑃𝑤(𝑢|𝑜). To train this objective, we
ollow the strategy of variational EM algorithm [58] from two steps:
-step and M-step by introducing triple LM 𝐋𝐌𝑣 and rule LM 𝐋𝐌𝑤.

-Step: Inference Procedure. In the E-step for the inference, 𝑃𝑤
s fixed to optimize 𝑄𝑣 by minimizing the KL divergence between
he variational distribution 𝑄𝑣(𝑢) and the true posterior distribution
𝑤(𝑢|𝑜). 𝑄𝑣(𝑢) is given by using mean-field approximation [59]:

𝑣(𝑢) =
∏

(ℎ,𝑟,𝑡)∈𝑢

𝑄𝑣((ℎ,𝑟,𝑡)) =
∏

(ℎ,𝑟,𝑡)∈𝑢

𝑓 ((ℎ,𝑟,𝑡)|𝐋𝐌𝑣). (11)

𝐋𝐌𝑣 denotes the used triple LM to infer triples’ plausibility. Through
inimizing the KL divergence, the optimal 𝑄𝑣 can be computed by [39,
0]:

og𝑄𝑣((ℎ,𝑟,𝑡)) = E𝑄𝑣(𝐌𝐁(ℎ,𝑟,𝑡))[log𝑃𝑤((ℎ,𝑟,𝑡)|𝐌𝐁(ℎ,𝑟,𝑡))] + 𝑐, (12)

here 𝑐 is a constant and 𝐌𝐁(ℎ, 𝑟, 𝑡) denotes the Markov blanket
f (ℎ, 𝑟, 𝑡) which is triples appearing together with (ℎ, 𝑟, 𝑡) in all rule
roundings. To realize the above objective, we first calculate 𝑃𝑤((ℎ,𝑟,𝑡)|

𝐌𝐁(ℎ,𝑟,𝑡)) using MLN with learned rules. After that, 𝐋𝐌𝑣 is utilized to
alculate triple plausibility and then is optimized under the supervision
f MLN output. Meanwhile, to retain the existing knowledge of KGs in
𝐌𝑣, we also add the observed triples 𝑜 to the training set. Totally,

he loss function of 𝑄𝑣 can be formally expressed as:

𝑄𝑣 =

⎧

⎪

⎨

⎪

⎩

∑

(ℎ,𝑟,𝑡)
E𝑃𝑤((ℎ,𝑟,𝑡)|𝐌𝐁(ℎ,𝑟,𝑡))[log𝑄𝑣((ℎ,𝑟,𝑡))], (ℎ, 𝑟, 𝑡) ∈ 𝑢

∑

(ℎ,𝑟,𝑡)
log𝑄𝑣((ℎ,𝑟,𝑡) = 1), (ℎ, 𝑟, 𝑡) ∈ 𝑜

. (13)

-Step: Learning Procedure. In M-step, the target is to learn se-
antic confidence for logic rules with fixed 𝑄𝑣 which maximize the

og-likelihood function of all the triplets, i.e., E𝑄𝑣(𝑢)
[

log𝑃𝑤(𝑜,𝑢)
]

.
owever, it is intractable to directly optimize because of the partition

unction. In our model, the confidence of logical rules is calculated
hrough an extremely discrete form as Eq. (8) shows. This leads to a
uge amount of memory and computational overhead if the model is
irectly optimized by backpropagation. Actually, the rule confidence
s obtained by calculating the similarity between reasoning paths. So
e can optimize the model 𝐋𝐌𝑤 of rule LM indirectly with the similar

trategy of topology context learning, because it constructs the semantic
ssociation between reasoning paths through contrastive learning. To
eflect the prior knowledge of 𝑄𝑣, we sample the training path set
𝑄𝑣 under the supervision of 𝑄𝑣. In this way, the model 𝐋𝐌𝑤 can
e optimized by the following loss function, which shares the same
alculation process with Eq. (7):

𝑃𝑤 = 𝑇𝐶𝐿(𝑄𝑣 ). (14)

.3. Triple embedding

In this section, we introduce how to implement 𝐋𝐌𝑣 to acquire the
ocal context of fact triples. Specifically, for a triple (ℎ, 𝑟, 𝑡) modeling,
he strategy of translational distance approaches is to conduct structure
earning by measuring spatial distance. They defines a score function,
uch as 𝑠(ℎ, 𝑟, 𝑡) = −‖𝑓 (𝐡, 𝐫) − 𝐭‖ for triples. 𝑓 (𝐡, 𝐫) is the combina-
ion function for a head embedding 𝐡 and a relation embedding 𝐫,
.e. 𝑓 (𝐡, 𝐫) = 𝐡 + 𝐫 in TransE.
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Algorithm 2: The overall process of FTL-LM.
Input: knowledge graph  = { ,, 𝑜}, hyperparameters.
Output: model 𝐋𝐌𝑣 fused topology contexts and logical rules.

1 Search rules and filrer through standard confidence, generate
rule set 𝛤 and hidden triples 𝑢;

2 Initialize 𝐋𝐌𝑐 with pre-trained language model;
3 Generate topology path set  via Algorithm 1;
4 for iter i=1 to 𝐸𝑝𝑜𝑐ℎ𝑐 do
5 Optimize 𝐋𝐌𝑐 on  ; ⊳ Eq. (7)
6 Initialize 𝐋𝐌𝑣 and 𝐋𝐌𝑤 with weights of 𝐋𝐌𝑐 ;
7 for iter k=1 to 𝐼𝑡𝑒𝑟𝑙 do
8 /*—–E-step: fix 𝐋𝐌𝑤—–*/
9 Calculate rule confidence using 𝐋𝐌𝑤 ; ⊳ Eq. (8)
10 Generate valid hidden triples  ′

𝑢 ;
11 Optimize 𝐋𝐌𝑣 on 𝑜 and  ′

𝑢 ; ⊳ Eq. (20)
12 /*—–M-step: fix 𝐋𝐌𝑣—–*/
13 Generate valid hidden triples  ′

𝑢 using 𝐋𝐌𝑣, and conduct
random-walk for path set 𝑄𝑣 ;

14 Optimize 𝐋𝐌𝑤 on 𝑄𝑣 ; ⊳ Eq. (14)
15 Return model 𝐋𝐌𝑣.

Whereas, in our model, the cosine similarity of the head-relation
air vector and the tail vector acquired by LMs are introduced to model
he validity of triples:

(ℎ, 𝑟, 𝑡) = sim(𝐞ℎ,𝑟, 𝐞𝑡) =
𝐞⊤ℎ,𝑟𝐞𝑡

‖𝐞ℎ,𝑟‖ ⋅ ‖𝐞𝑡‖
, (15)

here 𝐞ℎ,𝑟 is the embedding vector of the head-relation pair, while 𝐞𝑡
s the counterpart of the tail entity. They are all obtained by LMs with
he following inputs:

(ℎ,𝑟) ∶
[

[𝙲𝙻𝚂], 𝑤ℎ1, 𝑤ℎ2,… , [𝚂𝙴𝙿], 𝑤𝑟1, 𝑤𝑟2,… , [𝚂𝙴𝙿]
]

, (16)

𝑡 ∶
[

[𝙲𝙻𝚂], 𝑤𝑡1, 𝑤𝑡2,… , [𝚂𝙴𝙿]
]

, (17)

ℎ,𝑟 = Pool
(

𝐋𝐌𝑣(𝑋(ℎ,𝑟))
)

, (18)

𝑡 = Pool
(

𝐋𝐌𝑣(𝑋𝑡)
)

. (19)

To train the model, Eq. (13) is usually inefficient because it needs
o sample among all hidden triples, even if its score is low. Specifically,
e filter the hidden triples with the highest scores through the triple

hreshold 𝜂 for loss calculation:

𝑡𝑟𝑖𝑝𝑙𝑒 =
∑

(ℎ,𝑟,𝑡)∈
− log 𝑒𝑠(ℎ,𝑟,𝑡)∕𝜏

𝑒𝑠(ℎ,𝑟,𝑡)∕𝜏 +
∑

𝑡′∈𝑁ℎ,𝑟 𝑒
𝑠(ℎ,𝑟,𝑡′)∕𝜏

, (20)

where 𝑁ℎ,𝑟 are sampled negative entities for the triple (ℎ, 𝑟, 𝑡), i.e., 𝑁ℎ,𝑟
= {𝑒|(ℎ, 𝑟, 𝑒) ∉  }.  = 𝑜∪ ′

𝑢 where  ′
𝑢 is the most valid hidden triples

whose score is large than 𝜂 using 𝐋𝐌𝑤 among original hidden triple 𝑢.

4.4. Overall process and training regime

Our model LM-FTL actually follows a two-stage fine-tuning strat-
egy. In the first stage, we sample topology paths and corresponding
reasoning paths from the KG. Then the mask language modeling and
contrastive path learning is conducted by optimizing the model 𝐋𝐌𝑐 of
topology LM, by which the model fuses topology contexts of the KG.
Based on this, we teach it with logical rules in the second stage, where
a variational EM method is utilized to conduct soft distilling. Language
model 𝐋𝐌𝑣 and 𝐋𝐌𝑤 are utilized to model 𝑄𝑣 (in E-step) and 𝑃𝑤 (in
M-step), respectively. In each step, we use triple threshold 𝜂 to filter
valid hidden triples. If the score of a triple is larger than 𝜂, we then
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consider it as a positive triple. T
Table 2
The statistics of WN18RR, FB15k-237 and UMLS.

Dataset #Ent #Rel #Train #Val #Test

WN18RR 40,943 11 86,835 3034 3134
FB15k-237 14,541 237 272,115 17,535 20,466
UMLS 135 46 5216 652 661

To obtain candidate rules, the brute-force search similar to AMIE+
[61] is utilized to obtain closed Horn rules. The standard confidence
which is the quotient of the number of rule body groundings and
rule groundings is used to filter. Further, we can narrow down the
hidden triple 𝑢 to the part that these rules can deduce, which greatly
educes the computational load of the model. In the process of topol-
gy context learning, triple embedding and rule learning of FTL-LM,
easoning paths are all used as inputs to modeling objects. Although
heir generation methods and specific purposes are different, they are
ll directly input into LM and then the semantic similarity is calculated
y cosine metric. Through such a consistent calculation process, we
use topology contexts and logical rules of a KG into LMs. The overall
rocess of FTL-LM is summarized in Algorithm 2.

In our LM-FTL, we utilize the similar strategy with pLogicNet for
oft rule distilling. However, their implementations are totally different.
n one hand, pLogicNet models triple validity with simple embedding
ethod in E-step, such as TransE and DistMult. Differently, it is realized

y introducing LM without additional parameters in our method. On
ther hand, LM-FTL calculates the rule confidence through the com-
arison of reasoning paths and updates them with new generated paths
nvolving valid hidden triples. But pLogicNet simply conducts updates
y the gradient descent which is calculated by predicted and labeled
alues.

. Experiments and results

.1. Datasets and evaluation metrics

We conduct experiments on three popular KGs, i.e., WN18RR [62],
B15k-237 [63] and UMLS [62]. WN18RR is a subset from Word-
et [64], which consists of English phrases and their semantic relations.
B15k-237 is from Freebase [65] that contains abundant facts of the
eal world. UMLS contains medical semantic entities and their relations,
hich can be viewed as a domain KG that is widely used for the KGC

ask. All of them are challenging and most popular benchmarks. The
tatistics of them are summarized in Table 2.

To evaluate the KGC effectiveness of FTL-LM and other baselines,
he head or tail of a test triple is removed. This means the model will
redict the correct entity given query (ℎ, 𝑟, ?) or (?, 𝑟, 𝑡) for a valid triple
ℎ, 𝑟, 𝑡). Uniformly, a reverse relation for each relation is added to the
raining set, so predicting (?, 𝑟, 𝑡) is equivalent to predicting its inverse
uery (𝑡, 𝑟−1, ?). As usual KGC tasks, the 𝑓𝑖𝑙𝑡𝑒𝑟 ranking metrics [18]
s utilized for evaluation, which masks all other correct triples in
rain, valid or test dataset for a specific query. Specifically, the mean
ank (MR), mean reciprocal rank (MRR) and Hits@k are utilized as
erformance evaluation metrics, which is consistent with the setting of
ainstream KGC tasks. Hits@k represents the proportion of predicting

anks in the top k, where Hits@1, Hits@3 and Hits@10 are used. For
he results, a lower MR, as well as a higher MRR or Hits@k, generally
ndicate better performance of the model.

.2. Baselines and experiment setup

To verify the performance of our proposed FTL-LM on the KGC task,
eventeen strong baselines of four types are selected for comparison.

hey can be categorized as follows:
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• LM-based: using LMs to process the text of triples to complete
KGC. Five methods are utilized: KG-BERT [22], MTL-KGC [23],
MLMLM [24], StAR [25] and LP-BERT [26]. We regard these
methods as the main comparison objects as they and our FTL-LM
all use the same calculation tool, i.e., LMs.

• Fact-embedding: learning entities and relations embeddings for
fact triples modeling. We benchmark with five methods: TransE
[18], DistMult [19], ComplEx [31], RotatE [29] and QuatE [66].

• Topology-embedding: aggregating neighbor information using
GCN to model topology structures. We benchmark with R-GCN
[20], VR-GCN [32] and CompGCN [21].

• Rule-fused: reasoning by integrating logical rules. We bench-
mark with Neural LP [36]. DRUM [37], pLogicNet [39] and
RNNLogic [40].

When conducting experiments, the pre-trained LM RoBERTa-base
44] is utilized, which is in line with the backbone of LP-BERT [26]
the strongest baseline in LM-based methods). This is because of the
xcellent performance of RoBERTa-base in NLP and less space com-
lexity. In the heterogeneous random walk algorithm, the 𝛽 is set to
.2 and 𝜃 is set to 0.9. The min and max path length is 3 and 6. And
he number of topology path is 100k. The text sequence of entities and
elations is limited to a maximum of 64 tokens. For topology context
earning, the number of negative paths is 8. The batch size is 8 and the
aximum number of epochs for training is 20. For triple embedding,

he number of negative samples and the batch size are set to 64 and
56 respectively. The contrastive temperature 𝜏 is set to 0.05. To obtain
andidate rules, we first search for Horn rules with standard confidence
reater than 0.4 and then generate hidden triples. The maximum rule
ength is set to 3 and 2 for WN18RR and FB15k-237 for efficiency.
or rule distilling, we first train triple LM on observed triples for 20
pochs. Then we alternatively optimize triple LM and rule LM using
he EM algorithm, where there are 2 epochs for each update and triple
hreshold 𝜂 is sets 0.9. And in M-Step, we sample topology paths that
re started by the valid hidden triples. The number is 20k and 40k for
N18RR and FB15k-237 respectively. For experiments on UMLS, the

xperimental hyperparameters are consistent with that of WN18RR. In
ll training procedures, AdamW [67] algorithm with the learning rate
e-5 is utilized. To conduct experiments, the model is implemented
sing PyTorch1 and the pre-trained LMs are taken from HuggingFace.2
e utilized a GPU server for training and evaluating the model. It

ontains a 24G RTX3090 GPU and has 4 Intel(R) Xeon(R) Gold 6346
PUs with 3.10 GHz and 16 CPU cores. In addition, it contains 256G
emory space.

.3. Comparison results

We compare the performance of our FTL-LM with the performance
f the baselines, and the experimental results in the WN18RR and
B15k-237 datasets are shown in Table 3, where we have the following
hree observations:

Firstly, compared with the five LM-based baselines (the most direct
aselines), FTL-LM yields better results. It exceeds the best LM-based
aseline (LP-BERT) on 9 out 10 evaluation metrics over the two bench-
arking datasets by the average gains of 0.070, 0.062, 0.026, and
.050 on Hits@1, Hits@3, Hits@10, and MRR, respectively. LP-BERT
nly outperforms FTL-LM with a slight margin in MR (25) on FB15k-
37. StAR presents better performance in MR. This is likely because it
ses a stronger pre-trained LM, RoBERTa-large, while FTL-LM and LP-
ERT use RoBERTa-base [25,26]. Nevertheless, the rest of evaluation
etrics of StAR are much lower than FTL-LM. It shows that in the

M-based KGC learning paradigm, our proposed FTL-LM achieves the
trongest results in most of evaluation metrics.

1 https://pytorch.org/.
2 https://huggingface.co/models.
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Secondly, compared with fact-embedding methods, FTL-LM
achieves the best performance in 8 out of 10 metrics, where Hits@10
of FTL-LM is slight lower than that of RotatE by 0.012; MR of RotatE
and QuatE is slight lower than that of FTL-LM by 2 and 3 respectively
in the FB15k-237 dataset. Noticeably, in the WN18RR dataset, FTL-LM
has achieved a comprehensive performance boost. For example, FTL-
LM exceeds the state-of-the-art baseline QuatE in the fact-embedding
cluster by 0.016, 0.137, 0.209, 3385 and 0.062 in Hits@1, Hits@3,
Hits@10, MR and MRR, respectively. In the FB15k-237 dataset, it also
achieves 0.032, 0.044 and 0.026 improvements in Hits@1, Hits@3 and
Hits@10, compared with QuatE.

Thirdly, compared with topology-embedding and rule-fused meth-
ods, FTL-LM also delivers good performance. The performance of FTL-
LM is much better than model R-GCN, VR-GCN, Neural LP and DRUM.
Compared with CompGCN, pLogicNet and RNNLogic, our FTL-LM per-
formance is competitive in the FB15k-237 dataset. However, in the
WN18RR dataset, FTL-LM achieves great improvements, for exam-
ple, 0.143/0.227, 0.226/0.242 and 0.140/0.215 increase on Hits@3/
Hits@10 compared with these three strong baselines. CompGCN yields
marginal improvements in the FB15k-237 dataset, probably because it
enhances the expression effect of GCNs by introducing different aggre-
gation operations. However, CompGCN and other topology embedding-
based methods cannot handle the inductive setting of KGs, because
they are designed for the static KGC. These approaches have a narrow
application scope, because KGs are ever-evolving to increase entities
and triples in the real world [33,34].

From the above observations, we can verify the effectiveness of
our model FTL-LM. FTL-LM shows great potential to fuse topology
contexts and logical rules in LMs for KGC. Such a feature allows FTL-
LM to achieve great flexibility in continuously learning KGC from new
entities and relations in a KG. The developments in pre-trained LMs can
potentially empower FTL-LM to further improve its accuracy. Another
noteworthy phenomenon is that FLM-LM achieves higher accuracy
gains in the WN18RR dataset than that in the FB15k-237 dataset.
This is likely due to the fact that the former has fewer relations (11
vs. 237) and the patterns of topology contexts and logical rules are
relatively simple. In addition, the experimental results in the UMLS
dataset are in Table 4. We can observe that the performance of our
FTL-LM is comparable to LP-BERT and exceeds all other LM-based or
fact-embedding baselines. It further demonstrates the superiority of the
proposed FTL-LM.

In our model FTL-LM, a variational EM algorithm is introduced
for soft logical rule distilling. Although it seems time-consuming, it is
actually quite computationally efficient. Each training epoch of the E-
step has an average runtime of 24 min in the WN18RR dataset, which
is slightly shorter than the counterpart of LM-based models, e.g., StAR
needs 28 min on our GPU server. Additionally, each training epoch of
the M-step has an average runtime of 12 min. Thus, the consumption
time of our model is 1.28 times that of the StAR model (36 min vs.
28 min). Considering that our model achieves 20.9%, 14.6%, 6.4% and
14.2% performance improvements on Hits@1, Hits@3, Hits@10 and
MRR metric in the WN18RR dataset, we believe such time consumption
is worthwhile. This is because efficiency is not a priority in our task.
The KGC task means to accurately complete a known KG off-line, so
that it can be better utilized on a downstream task. An accurate model
is more valuable than a fast model in this domain, given a slight
difference in time costs.

5.4. Ablation studies

To investigate the effectiveness of topology contexts and logical
rules for KGC, we conduct ablation studies in both WN18RR and FB15k-
237 dataset. The results are shown in Table 5, where w/o TC and
w/o LR denote the ablation for topology contexts and logical rules,
respectively. When conducting experiments for the w/o TC setting,

the process of topology context learning is removed and the standard

https://pytorch.org/
https://huggingface.co/models
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Table 3
Experimental results in the WN18RR and FB15k-237 datasets. The optimal and suboptimal values of each metric are marked in bold and underlined respectively. ♣ means the
esults are from [25] and ♠ are from [40]. Others are directly taken from the corresponding papers.
Category Model WN18RR FB15k-237

Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10 MR MRR

LM-based

KG-BERT [22] ♣ 0.041 0.302 0.524 97 0.216 – – 0.420 153 –
MTL-KGC [23] 0.203 0.383 0.597 89 0.331 0.172 0.298 0.458 132 0.267
MLMLM [24] 0.439 0.542 0.611 1603 0.502 – – – – –
StAR [25] ♣ 0.243 0.491 0.709 51 0.401 0.205 0.322 0.482 117 0.296
LP-BERT [26] 0.343 0.563 0.752 92 0.482 0.223 0.336 0.490 154 0.310

Fact-embedding

TransE [18] ♣ 0.043 0.441 0.532 2300 0.243 0.198 0.367 0.441 323 0.279
DistMult [19] ♣ 0.412 0.470 0.504 7000 0.444 0.199 0.301 0.446 512 0.281
ComplEx [31] ♣ 0.409 0.469 0.530 7882 0.449 0.194 0.297 0.450 546 0.278
RotatE [29] ♣ 0.428 0.492 0.571 3340 0.476 0.241 0.375 0.533 177 0.338
QuatE [66] ♣ 0.436 0.500 0.564 3472 0.481 0.221 0.342 0.495 176 0.311

Topology-embedding
R-GCN [20]♠ 0.080 0.137 0.207 6700 0.123 0.100 0.181 0.300 600 0.164
VR-GCN [32] – – – – – 0.159 0.272 0.432 – 0.248
CompGCN [21] 0.443 0.494 0.546 3533 0.479 0.264 0.390 0.535 197 0.355

Rule-fused

Neural LP [36]♠ 0.368 0.386 0.408 – 0.381 0.173 0.259 0.361 – 0.237
DRUM [37] ♠ 0.369 0.388 0.410 – 0.382 0.174 0.261 0.364 – 0.238
pLogicNet [39] 0.015 0.411 0.531 3436 0.230 0.231 0.369 0.528 173 0.330
RNNLogic [40] ♠ 0.446 0.497 0.558 4615 0.483 0.252 0.380 0.530 232 0.344

Ours FTL-LM 0.452 0.637 0.773 87 0.543 0.253 0.386 0.521 179 0.348
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Table 4
Experimental results in the UMLS dataset. The optimal and suboptimal values of each
metric are marked in bold and underlined respectively. The results of baselines are
from [26].

Category Model UMLS

Hits@10 MR

LM-based
KG-BERT [22] 0.990 1.47
StAR [25] 0.991 1.49
LP-BERT [26] 1.000 1.18

Fact-embedding
TransE [18] 0.989 1.84
DistMult [19] 0.846 5.52
ComplEx [31] 0.967 2.59

Ours FTL-LM 0.997 1.28

Table 5
The ablation results of FTL-LM.

Ablation WN18RR FB15k-237

Hits@1 Hits@10 Hits@1 Hits@10

FTL-LM 0.452 0.773 0.253 0.521

FTL-LM w/o TC 0.423 0.759 0.241 0.521
𝛥 −0.029 −0.014 −0.012 0

FTL-LM w/o LR 0.395 0.751 0.239 0.502
𝛥 −0.057 −0.022 −0.014 −0.019

confidence values of candidate rules are utilized for the rule distilling
process. This means the rule confidence does not update throughout the
whole FTL-LM process. As the table shows, Hits@1 and Hits@10 values
all decrease in both WN18RR and FB15k-237 datasets except for the
Hits@10 of FB15k-237 which remains generally unchanged. It indicates
the topology contexts and logical rules are both effective for LMs to
perform KGC tasks, which explicitly verifies the motivation of our FTL-
LM. The ablation setting w/o LR has a greater effect than w/o TC. For
example, the former decreases by 0.029 on Hits@1 of WN18RR, while
the latter is correspondingly reduced by 0.057. This is likely because
rules directly affect a KGC model by generating hidden triples, while
path modeling is a relatively indirect way.

5.5. Parameter analysis

To demonstrate how hyperparameters affect the model perfor-
mance, we carry out experiments for the parameter analysis. For the
BFS weight 𝜃 in heterogeneous random-walk, the values in [0.5, 1.4]
261
Table 6
Parameter analysis of the attenuation coefficient 𝜃 and contrastive temperature 𝜏 in
WN18RR dataset.
𝜃 Hits@1 Hits@10 𝜏 Hits@1 Hits@10

0.70 0.437 0.756 0.04 0.451 0.772
0.75 0.436 0.758 0.05 0.452 0.773
0.80 0.442 0.754 0.06 0.449 0.771
0.85 0.445 0.763 0.07 0.438 0.748
0.90 0.452 0.773 0.08 0.433 0.756
0.95 0.449 0.762 0.09 0.424 0.731

with stride 0.1 are utilized. The results on the Hits@10 metric are
shown as Fig. 4, where there are two settings: only train topology
contexts (T) and full process of FTL-LM (T+L). For the T setting, we
can see that the model performance gradually rises and finally tends
to be stable. It shows that the KGC task pays more attention to the
feature construction of local graph topologies. For the T+L setting, the
erformance growth trend is nonidentical and fluctuated. Generally,
he growth ranges of Hits@10 values under setting T and T+L are about
.080/0.025 and 0.025/0.010, respectively. This is likely because after
he triple training and rule distilling, the model tends to be stable. The
nfluence of random walk is reduced.

For the attenuation coefficient 𝜃 and contrastive temperature 𝜏, we
arry out analysis in the WN18RR dataset. The results are shown as
able 6. We can observe that although the impact of 𝜃 is limited, the
erformance metrics will be reduced when it takes a small value. It
emonstrates that the heterogeneous random-walk should consider the
nfluence of relations and take a larger attenuation coefficient. Another
bservation is that small 𝜏 values can achieve better performance.
hen the value of 𝜏 is about 0.05, the performance of the model

eaches the optimum, which shows that LMs need strong contrastive
earning for precise KGC tasks.

.6. Case study for horn rules

To show the learned Horn rules by our model FTL-LM, we list
everal example rules of WN18RR and FB15k-237 dataset in Table 7,
hich provides intuitive evidence for the reasoning interpretability of

he KGC task. The confidence, body and head of rules are all given in
he table. All rule confidence is calculated by the language model LM
sing Eq. (8), which indicates that the LM has the ability to represent
ogical rule in KGs. By the soft rule distilling, the LM is updated with
he supervision of the hidden triples validated by another LM. In this
ay, our model FTL-LM is implicitly fused with logical rules.
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Fig. 4. Parameter analysis on the BFS weight 𝛽 for knowledge graph competition.
Table 7
Example logical rules learned by FTL-LM. ‘‘−1’’ denotes the inverse of the original relation.

Dataset No. Rules of the form ‘‘𝜖 𝑏𝑜𝑑𝑦⇒ ℎ𝑒𝑎𝑑’’

WN18RR

[1] 0.672 𝑚𝑒𝑚𝑏𝑒𝑟𝑀𝑒𝑟𝑜𝑛𝑦𝑚(𝑋, 𝑌1) ∧ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐻𝑦𝑝𝑒𝑟𝑛𝑦𝑚−1(𝑌1 , 𝑌2) ∧ 𝑑𝑜𝑚𝑎𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛(𝑌2 , 𝑍) ⇒ 𝑚𝑒𝑚𝑏𝑒𝑟𝑀𝑒𝑟𝑜𝑛𝑦𝑚(𝑋,𝑍)
[2] 0.581 𝑚𝑒𝑚𝑏𝑒𝑟𝑀𝑒𝑟𝑜𝑛𝑦𝑚(𝑋, 𝑌 ) ∧ 𝑣𝑒𝑟𝑏𝐺𝑟𝑜𝑢𝑝−1(𝑌 ,𝑍) ⇒ 𝑚𝑒𝑚𝑏𝑒𝑟𝑀𝑒𝑟𝑜𝑛𝑦𝑚(𝑋,𝑍)
[3] 0.782 𝑡𝑜𝑝𝑖𝑐𝑂𝑓 (𝑋, 𝑌1) ∧ 𝑟𝑒𝑙𝑎𝑡𝑒𝑑𝐹𝑜𝑟𝑚−1(𝑌1 , 𝑌2) ∧ 𝑡𝑜𝑝𝑖𝑐𝑂𝑓 (𝑌2 , 𝑍) ⇒ 𝑡𝑜𝑝𝑖𝑐𝑂𝑓 (𝑋,𝑍)
[4] 0.586 𝑚𝑒𝑚𝑏𝑒𝑟𝑀𝑒𝑟𝑜𝑛𝑦𝑚(𝑋, 𝑌1) ∧ 𝑟𝑒𝑙𝑎𝑡𝑒𝑑𝐹𝑜𝑟𝑚−1(𝑌1 , 𝑌2) ∧ ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑌2 , 𝑍) ⇒ ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑋,𝑍)
[5] 0.492 𝑟𝑒𝑙𝑎𝑡𝑒𝑑𝐹𝑜𝑟𝑚(𝑋, 𝑌1) ∧ 𝑟𝑒𝑙𝑎𝑡𝑒𝑑𝐹𝑜𝑟𝑚−1(𝑌1 , 𝑌2) ∧ 𝑑𝑜𝑚𝑎𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛(𝑌2 , 𝑍) ⇒ 𝑑𝑜𝑚𝑎𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛(𝑋,𝑍)

FB15k-237

[6] 0.551 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑒(𝑋, 𝑌 ) ∧ 𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒𝑃𝑎𝑟𝑒𝑛𝑡(𝑌 ,𝑍) ⇒ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑋,𝑍)
[7] 0.716 𝑐𝑟𝑒𝑤𝑚𝑒𝑚𝑏𝑒𝑟(𝑋, 𝑌 ) ∧ 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑂𝑓 (𝑌 ,𝑍) ⇒ 𝑓𝑖𝑙𝑚𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑅𝑒𝑔𝑖𝑜𝑛(𝑋,𝑍)
[8] 0.342 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑂𝑓−1(𝑋, 𝑌 ) ∧ 𝑏𝑖𝑏𝑠𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑒−1(𝑌 ,𝑍) ⇒ 𝑏𝑖𝑏𝑠𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑟𝑦−1(𝑋,𝑍)
[9] 0.821 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑟𝑦−1(𝑋, 𝑌 ) ∧ 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑂𝑓−1(𝑌 ,𝑍) ⇒ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑋,𝑍)
[10] 0.612 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝐵𝑦−1(𝑋, 𝑌 ) ∧ 𝑠𝑝𝑙𝑖𝑡𝑇 𝑜(𝑌 ,𝑍) ⇒ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝐵𝑦−1(𝑋,𝑍)
6. Conclusion and future work

In this paper, we propose the FTL-LM framework to fuse topol-
ogy contexts and logical rules in LMs for KGC. Since direct fusion is
intractable to achieve, we adopt an indirect method. Specifically, a het-
erogeneous random-walk algorithm is introduced to generate topology
paths. Then, the reasoning paths are obtained by the topology paths
transformation. Through the mask language modeling and contrastive
path learning, we fuse topology contexts in LMs. To fuse logical rules,
two LMs, say a triple LM and a rule LM, are utilized in a variational
EM algorithm and are optimized alternatively.

In summary, the main advantages and contributions of our model
are in the following three folds: (1) Theoretically, since the current
LM-based models only focus on modeling fact triples, we propose a
unified framework FTL-LM to fuse topology contexts and logical rules in
LMs. To our best knowledge, this is the first study that simultaneously
integrates these two types of information in LMs. (2) Experimentally,
our method FTL-LM surpasses all current LM-based methods on two
common large KGC datasets, i.e., WN18RR and FB15k-237. For ex-
ample, it achieves 2.1% and 3.1% improvement on Hits@10 metric
over the state-of-the-art LM-based model LP-BERT, respectively. (3)
Besides, our model has wider application potential. Compared with
LM-based methods, our method of rule mining can be transferred to
other intelligent application scenarios with high interpretability and
reliability requirements, such as medical diagnosis [68] and invest-
ment strategy [69]. On the other hand, compared with other types of
models, our model can handle tasks under KG inductive settings. It
indicates that new entities or relations emerge in the test phase, which
leads to the unavailability of fact-embedding and topology-embedding
methods [34,70]. In the future, we will explore the application of our
method to such scenarios and problems.
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