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Instituto Politécnico Nacional, Mexico 

navonil@sentic.net

Louis-Philippe Morency
Carnegie Mellon University, USA 

morency@cs.cmu.edu

Abstract

Multi-view sequential learning is a fundamental problem in
machine learning dealing with multi-view sequences. In a
multi-view sequence, there exists two forms of interactions
between different views: view-specific interactions and cross-
view interactions. In this paper, we present a new neural archi-
tecture for multi-view sequential learning called the Memory
Fusion Network (MFN) that explicitly accounts for both in-
teractions in a neural architecture and continuously models
them through time. The first component of the MFN is called
the System of LSTMs, where view-specific interactions are
learned in isolation through assigning an LSTM function to
each view. The cross-view interactions are then identified us-
ing a special attention mechanism called the Delta-memory
Attention Network (DMAN) and summarized through time
with a Multi-view Gated Memory. Through extensive experi-
mentation, MFN is compared to various proposed approaches
for multi-view sequential learning on multiple publicly avail-
able benchmark datasets. MFN outperforms all the multi-view
approaches. Furthermore, MFN outperforms all current state-
of-the-art models, setting new state-of-the-art results for all
three multi-view datasets.

Introduction

In many natural scenarios, data is collected from diverse
perspectives and exhibits heterogeneous properties: each of
these domains present a different view of the same data,
where each view can have its own individual representation
space and dynamics. Such forms of data are known as multi-
view data. In a multi-view setting, each view of the data
may contain some knowledge that other views do not have
access to. Therefore, multiple views must be employed to-
gether in order to describe the data comprehensively and
accurately. Multi-view learning has been an active area of
machine learning research (Xu, Tao, and Xu 2013). By ex-
ploring the consistency and complementary properties of
different views, multi-view learning can be more effective,
more promising, and has better generalization ability than
single-view learning.

Multi-view sequential learning extends the definition of
multi-view learning to manage with different views all in
the form of sequential data, i.e. data that comes in the form
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of sequences. For example, a video clip of an orator can be
partitioned into three sequential views – text representing
the spoken words, video of the speaker, and vocal prosodic
cues from the audio. In multi-view sequential learning, two
primary forms of interactions exist. The first form is called
view-specific interactions; interactions that involve only one
view. For example, learning the sentiment of a speaker based
only on the sequence of spoken works. More importantly, the
second form of interactions are defined across different views.
These are known as cross-view interactions. Cross-view in-
teractions span across both the different views and time – for
example a listener’s backchannel response or the delayed
rumble of distant lightning in the video and audio views.
Modeling both the view-specific and cross-view interactions
lies at the core of multi-view sequential learning.

This paper introduces a novel neural model for multi-
view sequential learning called the Memory Fusion Network
(MFN). At a first layer, the MFN encodes each view indepen-
dently using a component called the System of Long Short
Term Memories (LSTMs). In this System of LSTMs, each
view is assigned one LSTM function to model the dynamics
in that particular view. The second component of MFN is
called the Delta-memory Attention Network (DMAN) which
finds cross-view interactions across memories of the System
of LSTMs. Specifically, the DMAN identifies the cross-view
interactions by associating a relevance score to the memory
dimensions of each LSTM. The third component of the MFN
stores the cross-view information over time in the Multi-view
Gated Memory. This memory updates its contents based on
the outputs of the DMAN and its previously stored contents,
acting as a dynamic memory module for learning crucial
cross-view interactions throughout the sequential data. Pre-
diction is performed by integrating both view-specific and
cross-view and information.

We perform extensive experimentation to benchmark the
performance of MFN on 6 publicly available multi-view
sequential datasets. Throughout, we compare to the state-
of-the-art approaches in multi-view sequential learning. In
all the benchmarks, MFN is able to outperform the baselines,
setting new state-of-the-art results across all the datasets.

Related Work

Researchers dealing with multi-view sequential data have
largely focused on three major types of models.
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Figure 1: Overview figure of Memory Fusion Network (MFN) pipeline. σ denotes the sigmoid activation function, τ the tanh
activation function, ⊙ the Hadamard product and ⊕ element wise addition. Each LSTM encodes information from one view such
as language (l), video (v) or audio (a).

The first category of models have relied on concatena-
tion of all multiple views into a single view to simplify the
learning setting. These approaches then use this concatenated
view as input to a learning model. Hidden Markov Models
(HMMs) (Baum and Petrie 1966; Morency, Mihalcea, and
Doshi 2011), Support Vector Machines (SVMs) (Cortes and
Vapnik 1995), Hidden Conditional Random Fields (HCRFs)
(Quattoni et al. 2007) and their variants (Morency, Quattoni,
and Darrell 2007) have been successfully used for structured
prediction. More recently, with the advent of deep learning,
Recurrent Neural Networks, specially Long-short Term Mem-
ory (LSTM) networks (Hochreiter and Schmidhuber 1997),
have been extensively used for sequence modeling. Some de-
gree of success for modeling multi-view problems is achieved
using this concatenation. However, this concatenation causes
over-fitting in the case of a small size training sample and is
not intuitively meaningful because each view has a specific
statistical property (Xu, Tao, and Xu 2013) which is ignored
in these simplified approaches.

The second category of models introduce multi-view vari-
ants to the structured learning approaches of the first category.
Multi-view variations of these models have been proposed in-
cluding Multi-view HCRFs where the potentials of the HCRF
are changed to facilitate multiple views (Song, Morency,
and Davis 2012; 2013). Recently, multi-view LSTM models
have been proposed for multimodal setups where the LSTM
memory is partitioned into different components for different
views (Rajagopalan et al. 2016).

The third category of models rely on collapsing the time
dimension from sequences by learning a temporal represen-
tation for each of the different views. Such methods have
used average feature values over time (Poria, Cambria, and

Gelbukh 2015). Essentially these models apply conventional
multi-view learning approaches, such as Multiple Kernel
Learning (Poria, Cambria, and Gelbukh 2015), subspace
learning or co-training (Xu, Tao, and Xu 2013) to the multi-
view representations. Other approaches have trained different
models for each view and combined the models using de-
cision voting (Nojavanasghari et al. 2016), tensor products
(Zadeh et al. 2017) or deep neural networks (Poria et al.
2017). While these approaches are able to learn the relations
between the views to some extent, the lack of the temporal
dimension limits these learned representations, eventually
affect their performance. Such is the case for long sequences
where the learned representations do not sufficiently reflect
all the temporal information in each view.

The proposed model in this paper is different from the
first category models since it assigns one LSTM to each view
instead of concatenating the information from different views.
MFN is also different from the second category models since
it considers each view in isolation to learn view-specific in-
teractions. It then uses an explicitly designed attention mech-
anism and memory to find and store cross-view interactions
over time. MFN is different from the third category models
since view-specific and cross-view interactions are modeled
over time.

Memory Fusion Network (MFN)

The Memory Fusion Network (MFN) is a recurrent model
for multi-view sequential learning that consists of three main
components: 1) System of LSTMs consists of multiple Long-
short Term Memory (LSTM) networks, one for each of the
views. Each LSTM encodes the view-specific dynamics and
interactions. 2) Delta-memory Attention Network is a spe-



cial attention mechanism designed to discover both cross-
view and temporal interactions across different dimensions
of memories in the System of LSTMs. 3) Multi-view Gated
Memory is a unifying memory that stores the cross-view
interactions over time. Figure 1 shows the overview of MFN
pipeline and its components.

The input to MFN is a multi-view sequence with the set
of N views each of and length T . For example sequences
can consist of language, video, and audio for N = {l, v, a}.
The input data of the nth view is denoted as: xn = [xt

n ∶ t ≤
T,xt

n ∈ R
dxn ] where dxn is the input dimensionality of nth

view input xn.

System of LSTMs

For each view sequence, a Long-Short Term Memory
(LSTM), encodes the view-specific interactions over time. At
each input timestamp t, information from each view is input
to the assigned LSTM. For the nth view, the memory of as-
signed LSTM is denoted as cn = {ctn ∶ t ≤ T, c

t
n ∈ R

dcn} and
the output of each LSTM is defined as hn = {ht

n ∶ t ≤ T,h
t
n ∈

R
dcn} with dcn denoting the dimensionality of nth LSTM

memory cn. Note that the System of LSTMs allows different
sequences to have different input, memory and output shapes.
The following update rules are defined for the nth LSTM
(Hochreiter and Schmidhuber 1997):

itn = σ(W
i
n xt

n +U
i
n ht−1

n + bin) (1)

f t
n = σ(W

f
n xt

n +U
f
n ht−1

n + bfn) (2)

otn = σ(W
o
n xt

n +U
o
n ht−1

n + bon) (3)

mt
n =W

m
n xt

n +U
m
n ht−1

n + bmn (4)

ctn = f
t
n ⊙ ct−1n + itn ⊙mt

n (5)

ht
n = o

t
n ⊙ tanh(ctn) (6)

In the above equations, the trainable parameters are the two
affine transformations W ∗

n ∈ R
dxn×dcn and U∗

n ∈ R
dcn×dcn .

in, fn, on are the input, forget and output gates of the nth
LSTM respectively, mn is the proposed memory update
of nth LSTM for time t, ⊙ denotes the Hadamard product
(element-wise product), σ is the sigmoid activation function.

Delta-memory Attention Network

The goal of the Delta-memory Attention Network (DMAN)
is to outline the cross-view interactions at timestep t between
different view memories in the System of LSTMs. To this
end, we use a coefficient assignment technique on the con-
catenation of LSTM memories ct at time t. High coefficients
are assigned to the dimensions jointly form a cross-view inter-
action and low coefficients to the other dimensions. However,
coefficient assignment using only memories at time t is not
ideal since the same cross-view interactions can happen over
multiple time instances if the LSTM memories in those di-
mensions remain unchanged. This is especially troublesome
if the recurring dimensions are assigned high coefficients,
in which case they will dominate the coefficient assignment
system. To deal with this problem we add the memories ct−1
of time t − 1 so DMAN can have the freedom of leaving

unchanged dimensions in the System of LSTMs memories
and only assign high coefficient to them if they are about to
change. Ideally each cross-view interaction is only assigned
high coefficients once before the state of memories in System
of LSTMs changes. This can be done by comparing the mem-
ories at the two time-steps (hence the name Delta-memory).

The input to the DMAN is the concatenation of memories
at time t − 1 and t, denoted as c[t−1,t]. These memories are
passed to a neural network Da ∶ R2dc ↦ R

2dc , dc = ∑n dcn
to obtain the attention coefficients.

a[t−1,t] = Da(c
[t−1,t]) (7)

a[t−1,t] are softmax activated scores for each LSTM mem-
ory at time t − 1 and t. Applying softmax at the output layer
of Da allows for regularizing high-value coefficients over the
c[t−1,t]. The output of the DMAN is ĉ defined as:

ĉ[t−1,t] = c[t−1,t] ⊙ a[t−1,t] (8)
ĉ[t−1,t] is the attended memories of the LSTMs. Applying

this element-wise product amplifies the relevant dimensions
of the c[t−1,t] while marginalizing the effect of remaining
dimensions. DMAN is also able to find cross-view interac-
tions that do not happen simultaneously since it attends to
the memories in the System of LSTMs. These memories can
carry information about the observed inputs across different
timestamps.

Multi-view Gated Memory

Multi-view Gated Memory u is the neural component that
stores a history of cross-view interactions over time. It
acts as a unifying memory for the memories in System of
LSTMs. The output of DMAN ĉ[t−1,t] is directly passed to
the Multi-view Gated Memory to signal what dimensions
in the System of LSTMs memories constitute a cross-view
interaction. ĉ[t−1,t] is first used as input to a neural network
Du ∶ R2×dc ↦ R

dmem to generate a cross-view update pro-
posal ût for Multi-view Gated Memory. dmem is the dimen-
sionality of the Multi-view Gated Memory.

ût = Du(ĉ
[t−1,t]) (9)

This update proposes changes to Multi-view Gated Mem-
ory based on observations about cross-view interactions at
time t.

The Multi-view Gated Memory is controlled using set
of two gates. γ1, γ2 are called the retain and update gates
respectively. At each timestep t, γ1 assigns how much of the
current state of the Multi-view Gated Memory to remember
and γ2 assigns how much of the Multi-view Gated Memory
to update based on the update proposal ût. γ1 and γ2 are each
controlled by a neural network. Dγ1 , Dγ2 ∶ R

2×dc ↦ R
dmem

control part of the gating mechanism of Multi-view Gated
Memory using ĉ[t−1,t] as input:

γt
1 = Dγ1(ĉ

[t−1,t]), γt
2 = Dγ2(ĉ

[t−1,t]) (10)
At each time-step of MFN recursion, u is updated using

retain and update gates, γ1 and γ2, as well as the current cross-
view update proposal ût with the following formulation:
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ut = γt
1 ⊙ ut−1 + γt

2 ⊙ tanh(ût) (11)

ût is activated using tanh squashing function to improve
model stability by avoiding drastic changes to the Multi-view
Gated Memory. The Multi-view Gated Memory is different
from LSTM memory in two ways. Firstly, the Multi-view
Gated Memory has a more complex gating mechanism: both
gates are controlled by neural networks while LSTM gates are
controlled by a non-linear affine transformation. As a result,
the Multi-view Gated Memory has superior representation
capabilities as compared to the LSTM memory. Secondly, the
value of the Multi-view Gated Memory does not go through a
sigmoid activation in each iteration. We found that this helps
in faster convergence.

Output of MFN

The outputs of the MFN are the final state of the Multi-view
Gated Memory uT and the outputs of each of the n LSTMs:

hT = ⊕
n∈N

hT
n

representing individual sequence information. ⊕ denotes
vector concatenation.

Experimental Setup

In this section we design extensive experiments to evaluate
the performance of MFN. We choose three multi-view do-
mains: multimodal sentiment analysis, emotion recognition
and speaker traits analysis. All benchmarks involve three
views with completely different natures: language (text), vi-
sion (video), and acoustic (audio). The multi-view input sig-
nal is the video of a person speaking about a certain topic.
Since humans communicate their intentions in a structured
manner, there are synchronizations between intentions in
text, gestures and tone of speech. These synchronizations
constitute the relations between the three views.

Datasets

In all the videos in the datasets described below, only one
speaker is present in front of the camera.

Sentiment Analysis The first domain in our experiments
is multimodal sentiment analysis, where the goal is to identify
a speaker’s sentiment based on online video content. Multi-
modal sentiment analysis extends the conventional text-based
definition of sentiment analysis to a multimodal setup where
different views contribute to modeling the sentiment of the
speaker. We use four different datasets for English and Span-
ish sentiment analysis in our experiments. The CMU-MOSI
dataset (Zadeh et al. 2016) is a collection of 93 opinion videos
from online sharing websites. Each video consists of multiple
opinion segments and each segment is annotated with senti-
ment in the range [-3,3]. The MOUD dataset (Perez-Rosas,
Mihalcea, and Morency 2013) consists of product review
videos in Spanish. Each video consists of multiple segments
labeled to display positive, negative or neutral sentiment. To
maintain consistency with previous works (Poria et al. 2017;
Perez-Rosas, Mihalcea, and Morency 2013) we remove seg-
ments with the neutral label. The YouTube dataset (Morency,

Mihalcea, and Doshi 2011) introduced tri-modal sentiment
analysis to the research community. Multi-dimensional data
from the audio, visual and textual modalities are collected
in the form of 47 videos from the social media web site
YouTube. The collected videos span a wide range of product
reviews and opinion videos. These are annotated at the seg-
ment level for sentiment. The ICT-MMMO dataset (Wöllmer
et al. 2013) consists of online social review videos that en-
compass a strong diversity in how people express opinions,
annotated at the video level for sentiment.

Emotion Recognition The second domain in our experi-
ments is multimodal emotion recognition, where the goal is
to identify a speakers emotions based on the speakers verbal
and nonverbal behaviors. These emotions are categorized
as basic emotions (Ekman 1992) and continuous emotions
(Gunes 2010). We perform experiments on IEMOCAP dataset
(Busso et al. 2008). IEMOCAP consists of 151 sessions of
recorded dialogues, of which there are 2 speakers per session
for a total of 302 videos across the dataset. Each segment is
annotated for the presence of emotions (angry, excited, fear,
sad, surprised, frustrated, happy, disappointed and neutral) as
well as valence, arousal and dominance.

Speaker Traits Analysis The third domain in our experi-
ments is speaker trait recognition based on communicative
behavior of the speaker. The goal is to identify 16 different
speaker traits. The POM dataset (Park et al. 2014) contains
1,000 movie review videos. Each video is annotated for var-
ious personality and speaker traits, specifically: confident
(con), passionate (pas), voice pleasant (voi), dominant (dom),
credible (cre), vivid (viv), expertise (exp), entertaining (ent),
reserved (res), trusting (tru), relaxed (rel), outgoing (out),
thorough (tho), nervous (ner), persuasive (per) and humorous
(hum). The short form of these speaker traits is indicated
inside parentheses and used for the rest of this paper.

Sequence Features

The chosen system of sequences are the three modalities:
language, visual and acoustic. To get the exact utterance time-
stamp of each word we perform forced alignment using P2FA
(Yuan and Liberman 2008) which allows us to align the three
modalities together. Since words are considered the basic
units of language we use the interval duration of each word
utterance as a time-step. We calculate the expected video
and audio features by taking the expectation of their view
feature values over the word utterance time interval (Zadeh
et al. 2017). For each of the three modalities, we process the
information from videos as follows.

Language View For the language view, Glove word em-
beddings (Pennington, Socher, and Manning 2014) were used
to embed a sequence of individual words from video segment
transcripts into a sequence of word vectors that represent
spoken text. The Glove embeddings used are 300 dimen-
sional word embeddings trained on 840 billion tokens from
the common crawl dataset, resulting in a sequence of dimen-
sion T × dxtext = T × 300 after alignment. The timing of
word utterances is extracted using P2FA forced aligner. This
extraction enables alignment between text, audio and video.

Visual View For the visual view, the library Facet (iMo-
tions 2017) is used to extract a set of visual features including
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Dataset CMU-MOSI ICT-MMMO YouTube MOUD IEMOCAP POM
Level Segment Video Segment Segment Segment Video
# Train 52→1284 220 30→169 49→243 5→6373 600
# Valid 10→229 40 5→41 10→37 1→1775 100
# Test 31→686 80 11→59 20→106 1→1807 203

Table 1: Data splits to ensure speaker independent learning.
Arrows indicate the number of annotated segments in each
video.

facial action units, facial landmarks, head pose, gaze tracking
and HOG features (Zhu et al. 2006). These visual features are
extracted from the full video segment at 30Hz to form a se-
quence of facial gesture measures throughout time, resulting
in a sequence of dimension T × dxvideo

= T × 35.
Acoustic View For the audio view, the software CO-

VAREP (Degottex et al. 2014) is used to extract acous-
tic features including 12 Mel-frequency cepstral coeffi-
cients, pitch tracking and voiced/unvoiced segmenting fea-
tures (Drugman and Alwan 2011), glottal source parameters
(Childers and Lee 1991; Drugman et al. 2012; Alku 1992;
Alku, Strik, and Vilkman 1997; Alku, Bäckström, and Vilk-
man 2002), peak slope parameters and maxima dispersion
quotients (Kane and Gobl 2013). These visual features are
extracted from the full audio clip of each segment at 100Hz
to form a sequence that represent variations in tone of voice
over an audio segment, resulting in a sequence of dimension
T × dxaudio

= T × 74 after alignment.

Experimental Details

The time steps in the sequences are chosen based on word
utterances. The expected (average) visual and acoustic se-
quences features are calculated for each word utterance to
ensure time alignment between all LSTMs. In all the afore-
mentioned datasets, it is important that the same speaker does
not appear in both train and test sets in order to evaluate the
generalization of our approach. The training, validation and
testing splits are performed so that the splits are speaker in-
dependent. The full set of videos (and segments for datasets
where the annotations are at the resolution of segments) in
each split is detailed in Table 1. All baselines were re-trained
using these video-level train-test splits of each dataset and
with the same set of extracted sequence features. Training is
performed on the labeled segments for datasets annotated at
the segment level and on the labeled videos otherwise. All
the code and data required to recreate the reported results are
available at https://github.com/A2Zadeh/MFN.

Baseline Models

We compare the performance of the MFN with current state-
of-the-art models for multi-view sequential learning. To per-
form a more extensive comparison we train all the following
baselines across all the datasets. Due to space constraints,
each baseline name is denoted by a symbol (in parenthesis)
which is used in Table 2 to refer to specific baseline results.

View Concatenation Sequential Learning Models
Song2013 (⊲): This is a layered model that uses CRFs with

latent variables to learn hidden spatio-temporal dynamics.

For each layer an abstract feature representation is learned
through non-linear gate functions. This procedure is repeated
to obtain a hierarchical sequence summary (HSS) representa-
tion (Song, Morency, and Davis 2013).

Morency2011 (×): Hidden Markov Model is a statistical
Markov model in which the system being modeled is assumed
to be a Markov process with unobserved (i.e. hidden) states
(Baum and Petrie 1966). We follow the implementation in
(Morency, Mihalcea, and Doshi 2011) for tri-modal data.

Quattoni2007 (≀): Concatenated features are used as input
to a Hidden Conditional Random Field (HCRF) (Quattoni et
al. 2007). HCRF learns a set of latent variables conditioned
on the concatenated input at each time step.

Morency2007 (#): Latent Discriminative Hidden Condi-
tional Random Fields (LDHCRFs) are a class of models
that learn hidden states in a Conditional Random Field us-
ing a latent code between observed input and hidden output
(Morency, Quattoni, and Darrell 2007).

Hochreiter1997 (§): A LSTM with concatenation of data
from different views as input (Hochreiter and Schmidhu-
ber 1997). Stacked, bidirectional and stacked bidirectional
LSTMs are also trained in a similar fashion for stronger base-
lines.

Multi-view Sequential Learning Models
Rajagopalan2016 (◇): Multi-view (MV) LSTM (Ra-

jagopalan et al. 2016) aims to extract information from mul-
tiple sequences by modeling sequence-specific and cross-
sequence interactions over time and output. It is a strong
tool for synchronizing a system of multi-dimensional data
sequences.

Song2012 (⊳): MV-HCRF (Song, Morency, and Davis
2012) is an extension of the HCRF for Multi-view data. In-
stead of view concatenation, view-shared and view specific
sub-structures are explicitly learned to capture the interaction
between views. We also implement the topological variations
- linked, coupled and linked-couple that differ in the types of
interactions between the modeled views. Song2012LD (∎):
is a variation of this model that uses LDHCRF instead of
HCRF.

Song2013MV (∪): MV-HSSHCRF is an extension of
Song2013 that performs Multi-view hierarchical sequence
summary representation.

Dataset Specific Baselines
Poria2015 (♣): Multiple Kernel Learning (Bach, Lanck-

riet, and Jordan 2004) classifiers have been widely applied to
problems involving multi-view data. Our implementation fol-
lows a previously proposed model for multimodal sentiment
analysis (Poria, Cambria, and Gelbukh 2015).

Nojavanasghari2016 (♭): Deep Fusion Approach (Noja-
vanasghari et al. 2016) trains single neural networks for each
view’s input and combine the views with a joint neural net-
work. This baseline is current state of the art in POM dataset.

Zadeh2016 (♡): Support Vector Machine (Cortes and Vap-
nik 1995) is a widely used classifier. This baseline is closely
implemented similar to a previous work in multimodal senti-
ment analysis (Zadeh et al. 2016).

Ho1998 (●): We also compare to a Random Forest (Ho
1998) baseline as another strong non-neural classifier.
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Task CMU-MOSI Sentiment ICT-MMMO Sentiment YouTube Sentiment MOUD Sentiment
Metric BA F1 MA(7) MAE r BA F1 MAE r MA(3) F1 BA F1
SOTA2 73.9† 74.0◇ 32.4§ 1.023§ 0.601◇ 81.3# 79.6# 0.968♭ 0.499♭ 49.2● 49.2● 72.6† 72.9†

SOTA1 74.6∗ 74.5∗ 33.2◇ 1.019◇ 0.622§ 81.3∎ 79.6∎ 0.842§ 0.588§ 50.2♣ 50.8♣ 74.0♣ 74.7♣

MFN l 73.2 73.0 32.9 1.012 0.607 60.0 55.3 1.144 0.042 50.9 49.1 69.8 69.9
MFN a 53.1 47.5 15.0 1.446 0.186 80.0 79.3 1.089 0.462 39.0 27.0 60.4 47.1
MFN v 55.4 54.7 15.0 1.446 0.155 58.8 58.6 1.204 0.402 42.4 35.7 61.3 47.6
MFN (no Δ) 75.5 75.2 34.5 0.980 0.626 76.3 75.8 0.890 0.577 55.9 55.4 71.7 70.6
MFN (no mem) 76.5 76.5 30.8 0.998 0.582 82.5 82.4 0.883 0.597 47.5 42.8 75.5 72.9
MFN 77.4 77.3 34.1 0.965 0.632 87.5 87.1 0.739 0.696 61.0 60.7 81.1 80.4

ΔSOTA ↑ 2.8 ↑ 2.8 ↑ 0.9 ↓ 0.054 ↑ 0.010 ↑ 6.2 ↑ 7.5 ↓ 0.103 ↑ 0.108 ↑ 10.8 ↑ 9.9 ↑ 7.1 ↑ 5.7

Task IEMOCAP Discrete Emotions IEMOCAP Valence IEMOCAP Arousal IEMOCAP Dominance
Metric MA(9) F1 MAE r MAE r MAE r

SOTA2 35.9† 34.1† 0.248† 0.065† 0.521∗ 0.617§ 0.671∗ 0.479§

SOTA1 36.0∗ 34.5∗ 0.244§ 0.088§ 0.513◇ 0.620◇ 0.668◇
0.519

◇

MFN l 25.8 16.1 0.250 -0.022 1.566 0.105 1.599 0.162
MFN a 22.5 11.6 0.279 0.034 1.924 0.447 1.848 0.417
MFN v 21.5 10.5 0.248 -0.014 2.073 0.155 2.059 0.083
MFN (no Δ) 34.8 33.1 0.243 0.098 0.500 0.590 0.629 0.466
MFN (no mem) 31.2 28.0 0.246 0.089 0.509 0.634 0.679 0.441
MFN 36.5 34.9 0.236 0.111 0.482 0.645 0.612 0.509
ΔSOTA ↑ 0.5 ↑ 0.4 ↓ 0.008 ↑ 0.023 ↓ 0.031 ↑ 0.025 ↓ 0.056 ↓ 0.010

Dataset POM
Task Con Pas Voi Dom Cre Viv Exp Ent Res Tru Rel Out Tho Ner Per Hum
Metric MA(7) MA(7) MA(7) MA(7) MA(7) MA(7) MA(7) MA(7) MA(5) MA(5) MA(5) MA(5) MA(5) MA(5) MA(7) MA(5)
SOTA2 26.6● 27.6§ 32.0♡ 35.0♡ 26.1♭ 32.0♭ 27.6∗ 29.6♭ 34.0♡ 53.2● 49.8♡ 39.4♭ 42.4§ 42.4♭ 27.6∗ 36.5†

SOTA1 26.6● 31.0∗ 33.0♭ 35.0♡ 27.6† 36.5† 30.5† 31.5♡ 34.0♡ 53.7♭ 50.7◇ 42.9♡ 45.8† 42.4♭ 28.1♡ 40.4●

MFN l 26.6 31.5 21.7 34.0 25.6 28.6 26.6 30.5 29.1 34.5 39.9 31.5 30.5 34.0 24.1 42.4
MFN a 27.1 26.1 29.6 34.5 24.6 29.6 26.6 31.0 32.5 35.0 45.8 37.4 35.0 40.4 28.1 36.5
MFN v 25.6 23.6 26.6 31.5 25.1 28.6 25.6 26.6 32.5 48.3 43.3 36.9 42.4 33.5 24.1 37.4
MFN (no Δ) 28.1 32.0 34.5 36.0 32.0 33.0 29.6 33.5 33.0 56.2 51.2 42.9 44.3 43.8 31.5 42.9
MFN (no mem) 26.1 27.1 34.5 35.5 28.1 31.0 27.1 30.0 32.0 55.2 50.7 39.4 42.9 42.4 29.1 33.5
MFN 34.5 35.5 37.4 41.9 34.5 36.9 36.0 37.9 38.4 57.1 53.2 46.8 47.3 47.8 34.0 47.3

ΔSOTA ↑ 7.9 ↑ 4.5 ↑ 4.4 ↑ 6.9 ↑ 6.9 ↑ 0.4 ↑ 5.5 ↑ 6.4 ↑ 4.4 ↑ 3.4 ↑ 2.5 ↑ 3.9 ↑ 1.5 ↑ 5.4 ↑ 5.9 ↑ 6.9

Metric MAE
SOTA2 1.033♭ 1.067§ 0.911§ 0.864∗ 1.022§ 0.981§ 0.990§ 0.967♭ 0.884♭ 0.556§ 0.594§ 0.700§ 0.712§ 0.705† 1.084§ 0.768♭

SOTA1 1.016† 1.008† 0.899♭ 0.859† 0.942†
0.905

† 0.906† 0.927† 0.877◇ 0.523◇ 0.591♭ 0.698♭ 0.680† 0.687◇ 1.025† 0.767†

MFN l 1.065 1.152 1.033 0.875 1.074 1.111 1.135 0.994 0.915 0.591 0.612 0.792 0.753 0.722 1.134 0.838
MFN a 1.086 1.147 0.937 0.887 1.104 1.028 1.075 1.009 0.882 0.589 0.611 0.719 0.759 0.697 1.159 0.783
MFN v 1.083 1.153 1.009 0.931 1.085 1.073 1.135 1.028 0.929 0.664 0.682 0.771 0.770 0.773 1.138 0.793
MFN (no Δ) 1.015 1.061 0.891 0.859 0.994 0.958 1.000 0.955 0.875 0.527 0.583 0.691 0.711 0.691 1.052 0.750
MFN (no mem) 1.018 1.077 0.887 0.865 1.014 0.995 1.012 0.959 0.877 0.530 0.581 0.701 0.719 0.694 1.063 0.764
MFN 0.952 0.993 0.882 0.835 0.903 0.908 0.886 0.913 0.821 0.521 0.566 0.679 0.665 0.654 0.981 0.727

ΔSOTA ↓ 0.064 ↓ 0.015 ↓ 0.017 ↓ 0.024 ↓ 0.039 ↑ 0.003 ↓ 0.020 ↓ 0.014 ↓ 0.056 ↓ 0.002 ↓ 0.025 ↓ 0.019 ↓ 0.015 ↓ 0.033 ↓ 0.044 ↓ 0.040

Metric r

SOTA2 0.240♭ 0.302§ 0.031§ 0.139♭ 0.170§ 0.244§ 0.265§ 0.240§ 0.148♭ 0.109† 0.083§ 0.093♭ 0.260§ 0.136♭ 0.217§ 0.259♭

SOTA1 0.359† 0.425† 0.131◇ 0.234† 0.358† 0.417† 0.450† 0.361† 0.295◇ 0.237◇ 0.119◇ 0.238◇ 0.363† 0.258◇ 0.344† 0.319†

MFN l 0.223 0.281 -0.013 0.118 0.141 0.189 0.188 0.227 -0.168 -0.064 0.126 0.095 0.173 0.024 0.183 0.216
MFN a 0.092 0.128 -0.019 0.050 0.021 -0.007 0.035 0.130 0.152 -0.071 0.019 -0.003 -0.019 0.106 0.024 0.064
MFN v 0.146 0.091 -0.077 -0.012 0.019 -0.035 0.012 0.038 -0.004 -0.169 0.030 -0.026 0.047 0.059 0.078 0.159
MFN (no Δ) 0.307 0.373 0.140 0.209 0.272 0.334 0.333 0.305 0.194 0.218 0.160 0.152 0.277 0.182 0.288 0.334
MFN (no mem) 0.259 0.261 0.166 0.109 0.161 0.188 0.209 0.247 0.189 0.059 0.151 0.115 0.161 0.134 0.190 0.231
MFN 0.395 0.428 0.193 0.313 0.367 0.431 0.452 0.395 0.333 0.296 0.255 0.259 0.381 0.318 0.377 0.386

ΔSOTA ↑ 0.036 ↑ 0.003 ↑ 0.062 ↑ 0.079 ↑ 0.009 ↑ 0.014 ↑ 0.002 ↑ 0.034 ↑ 0.038 ↑ 0.059 ↑ 0.136 ↑ 0.021 ↑ 0.018 ↑ 0.060 ↑ 0.033 ↑ 0.067

Table 2: Results for sentiment analysis on CMU-MOSI, ICT-MMMO, YouTube and MOUD, emotion recognition on IEMOCAP
and personality trait recognition on POM. SOTA1 and SOTA2 refer to the previous best and second best state of the art
respectively. Best results are highlighted in bold, ΔSOTA shows the change in performance over SOTA1. Improvements are
highlighted in green. The MFN significantly outperforms SOTA across all datasets and metrics except ΔSOTA entries in gray.
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Dataset Specific State-of-the-art Baselines
Poria2017 (†): Bidirectional Contextual LSTM (Poria et al.

2017) performs context-dependent fusion of multi-sequence
data that holds the state of the art for emotion recognition on
IEMOCAP dataset and sentiment analysis on MOUD dataset.

Zadeh2017 (∗): Tensor Fusion Network (Zadeh et al. 2017)
learns explicit uni-view, bi-view and tri-view concepts in
multi-view data. It is the current state of the art for sentiment
analysis on CMU-MOSI dataset.

Wang2016 (∩): Selective Additive Learning Convolutional
Neural Network (Wang et al. 2016) is a multimodal sentiment
analysis model that attempts to prevent identity-dependent in-
formation from being learned so as to improve generalization
based only on accurate indicators of sentiment.

MFN Ablation Study Baselines
MFN {l, v, a}: These baselines use only individual views –

l for language, v for visual, and a for acoustic. The DMAN
and Multi-view Gated Memory are also removed since only
one view is present. This effectively reduces the MFN to one
single LSTM which uses input from one view.

MFN (no Δ): This variation of our model shrinks the
context to only the current timestamp t in the DMAN. We
compare to this model to show the importance of having the
Δ memory temporal information – memories at both time t
and t − 1.

MFN (no mem): This variation of our model removes
the Delta-memory Attention Network and Multi-view Gated
Memory from the MFN. Essentially this is equivalent to
three disjoint LSTMs. The output of the MFN in this case
would only be the outputs of LSTM at the final timestamp
T . This baseline is designed to evaluate the importance of
spatio-temporal relations between views through time.

MFN Results and Discussion

Table 2 summarizes the comparison between MFN and pro-
posed baselines for sentiment analysis, emotion recognition
and speaker traits recognition. Different evaluation tasks are
performed for different datasets based on the provided labels:
binary classification, multi-class classification, and regres-
sion. For binary classification we report results in binary
accuracy (BA) and binary F1 score. For multiclass classifica-
tion we report multiclass accuracy MA(k) where k denotes
the number of classes, and multiclass F1 score. For regres-
sion we report Mean Absolute Error (MAE) and Pearson’s
correlation r. Higher values denote better performance for
all metrics. The only exception is MAE which lower values
indicate better performance. All the baselines are trained for
all the benchmarks using the same input data as MFN and
best set of hyperparameters are chosen based on a validation
set according to Table 1. The best performing baseline for
each benchmark is referred to as state of the art 1 (SOTA1)
and SOTA2 is the second best performing model. SOTA mod-
els change across different metrics since different models
are suitable for different tasks. The superscript symbol on
each number indicates what method it belongs to. The perfor-
mance improvement of our MFN over the SOTA1 model is
denoted as ΔSOTA, the raw improvement over the previous
models. The results of our experiments can be summarized

as follows:
MFN Achieves State-of-The-Art Performance for Multi-
view Sequential Modeling: Our approach significantly out-
performs the proposed baselines, setting new state of the art
in all datasets. Furthermore, MFN shows a consistent trend
for both classification and regression. The same is not true
for other baselines as their performance varies based on the
dataset and evaluation task. Additionally, the better perfor-
mance of MFN is not at the expense of higher number of
parameters or lower speed: the most competitive baseline
in most datasets is Zadeh2017 which contains roughly 2e7
parameters while MFN contains roughly 5e5 parameters. On
a Nvidia GTX 1080 Ti GPU, Zadeh2017 runs with an aver-
age frequency of 278 IPS (data point inferences per second)
while our model runs at an ultra realtime frequency of 2858
IPS.
Ablation Studies: Our comparison with variations of our
model show a consistent trend:

MFN > MFN (no Δ),MFN (no mem) > MFN {l, v, a}

The comparison between MFN and MFN (no Δ) indicates
the crucial role of the memories of time t − 1. The compari-
son between MFN and MFN (no mem) shows the essential
role of the Multi-view Gated Memory. The final observation
comes from comparing all multi-view variations of MFN
with single view MFN {l, v, a}. This indicates that using
multiple views results in better performance even if various
crucial components are removed from MFN.
Increasing The DMAN Input Region Size: In our set of
experiments increasing the Δ to cover [t − q, t] instead of
[t − 1, t] did not significantly improve the performance of
the model. We argue that this is because additional mem-
ory steps do not add any information to the DMAN internal
mechanism.

Conclusion

This paper introduced a novel approach for multi-view se-
quential learning called Memory Fusion Network (MFN).
The first component of MFN is called System of LSTMs. In
System of LSTMs, each view is assigned one LSTM func-
tion to model the interactions within the view. The second
component of MFN is called Delta-memory Attention Net-
work (DMAN). DMAN outlines the relations between views
through time by associating a cross-view relevance score to
the memory dimensions of each LSTM. The third component
of the MFN unifies the sequences and is called Multi-view
Gated Memory. This memory updates its content based on
the outputs of DMAN calculated over memories in System of
LSTMs. Through extensive experimentation on multiple pub-
licly available datasets, the performance of MFN is compared
with various baselines. MFN shows state-of-the-art perfor-
mance in multi-view sequential learning on all the datasets.
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