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Abstract

Analyzing people’s opinions and sentiments towards certain
aspects is an important task of natural language understand-
ing. In this paper, we propose a novel solution to targeted
aspect-based sentiment analysis, which tackles the challenges
of both aspect-based sentiment analysis and targeted senti-
ment analysis by exploiting commonsense knowledge. We
augment the long short-term memory (LSTM) network with
a hierarchical attention mechanism consisting of a target-
level attention and a sentence-level attention. Commonsense
knowledge of sentiment-related concepts is incorporated into
the end-to-end training of a deep neural network for senti-
ment classification. In order to tightly integrate the common-
sense knowledge into the recurrent encoder, we propose an
extension of LSTM, termed Sentic LSTM. We conduct exper-
iments on two publicly released datasets, which show that the
combination of the proposed attention architecture and Sen-
tic LSTM can outperform state-of-the-art methods in targeted
aspect sentiment tasks.

Introduction

In recent years, sentiment analysis (Cambria et al. 2017a)
has become increasingly popular for processing social me-
dia data on online communities, blogs, wikis, microblogging
platforms, and other online collaborative media. Sentiment
analysis is a branch of affective computing research (Poria et
al. 2017) that aims to classify text into either positive or neg-
ative, but sometimes also neutral (Chaturvedi et al. 2017).
Most of the literature is on English language but recently an
increasing number of publications is tackling the multilin-
guality issue (Lo et al. 2017).

While most works approach it as a simple categorization
problem, sentiment analysis is actually a suitcase research
problem (Cambria et al. 2017b) that requires tackling many
natural language processing (NLP) tasks, including named
entity recognition (Ma, Cambria, and Gao 2016), word po-
larity disambiguation (Xia et al. 2015), personality recogni-
tion (Majumder et al. 2017), sarcasm detection (Poria et al.
2016), and aspect extraction. The last one, in particular, is
an extremely important subtask that, if ignored, can consis-
tently reduce the accuracy of sentiment classification in the
presence of multiple opinion targets.
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Hence, aspect-based sentiment analysis (ABSA) (Pontiki
et al. 2014; 2016; Poria, Cambria, and Gelbukh 2016) ex-
tends the typical setting of sentiment analysis with a more
realistic assumption that polarity is associated with specific
aspects (or product features) rather than the whole text unit.
For example, in the sentence “The design of the space is
good but the service is horrible”, the sentiment expressed to-
wards the two aspects (“space” and “service”) is completely
opposite. Through aggregating sentiment analysis with as-
pects, ABSA allows the model to produce a fine-grained un-
derstanding of people’s opinion towards a particular product.

Targeted (or target-dependent) sentiment classifica-
tion (Tang et al. 2016; Dong et al. 2014; Wang et al. 2017),
instead, resolves the sentiment polarity of a given target in
its context, assuming that a sentence might express different
opinions towards different targeted entities. For instance, in
the sentence “I just log on my [facebook]. [Transformers] is
boring”, the sentiment expressed towards [Transformers] is
negative, while there is no clear sentiment for [facebook].
Recently, targeted ABSA (Saeidi et al. 2016) has attempted
to tackle the challenges of both ABSA and targeted senti-
ment analysis. The task is to jointly detect the aspect cat-
egory and resolve the polarity of aspects with respect to a
given target.

Deep learning methods (Nguyen and Shirai 2015; Wang
et al. 2016; Tang et al. 2016; Tang, Qin, and Liu 2016;
Wang et al. 2017) have achieved great accuracy when ap-
plied to ABSA and targeted sentiment analysis. Especially,
neural sequential models, such as long short-term memory
(LSTM) networks (Hochreiter and Schmidhuber 1997), are
of growing interest for their capacity of representing sequen-
tial information. Moreover, most of these sequence-based
methods incorporate the attention mechanism, which has its
root in the alignment model of machine translation (Bah-
danau, Cho, and Bengio 2014). Such mechanism takes an
external memory and representations of a sequence as input
and produces a probability distribution quantifying the con-
cerns in each position of the sequence.

Despite these advances in sentiment analysis, we identify
three problems remaining unsolved in current state-of-the-
art methods. Firstly, a given target might consist of multiple
instances (mentions of the same target) or multiple words
in a sentence, existing research assumes all instances are of
equal importance and simply computes an average vector
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over such instances. This oversimplification conflicts with
the fact that one or more instances of the target are often
more tightly tied with sentiment than others. Secondly, hier-
archical attention exploited by existing methods only implic-
itly models the process of inferring the sentiment-bearing
words related to the given target and aspect as black-box.
Last but not least, existing research falls short in effectively
incorporating into the deep neural network external knowl-
edge, e.g., affective or commonsense knowledge, that could
directly contribute to the identification of aspects and senti-
ment polarity. Without any constraints, moreover, the global
attention model might tend to encode task-irrelevant infor-
mation. To address these problems, our method simultane-
ously learns a target-specific instance attention as well as a
global attention. In particular, our contribution is three-fold:

1. We propose a hierarchical attention model that explicitly
attends to first the targets and then the whole sentence;

2. We extend the classic LSTM cell with components ac-
counting for integration with external knowledge;

3. We incorporate affective commonsense knowledge into a
deep neural network.

Related Work
In this section, we survey multiple research areas related to
the proposed framework, namely: ABSA, targeted sentiment
analysis, targeted ABSA, and finally works on incorporating
external knowledge into deep neural models.

Aspect-Based Sentiment Analysis

ABSA is the task of classifying sentiment polarity with re-
spect to a set of aspects. The biggest challenge faced by
ABSA is how to effectively represent the aspect-specific
sentiment information of the whole sentence. Early works
on ABSA have mainly relied on feature-engineering to char-
acterize sentences (Wagner et al. 2014; Kiritchenko et al.
2014). Motivated by the success of deep learning in repre-
sentation learning, many recent works (Dong et al. 2014;
Lakkaraju, Socher, and Manning 2014; Nguyen and Shi-
rai 2015; Wang et al. 2016) utilize deep neural networks
to generate sentence embeddings (dense vector representa-
tion of sentences) which are then fed to a classifier as a low-
dimensional feature vector. Moreover, the representation can
be enhanced by using the attention mechanism (Wang et al.
2016), which is typically a multi-layer neural network tak-
ing as input the word sequence and aspects. For each word
of the sentence, the attention vector quantifies its sentiment
salience as well as the relevance to the given aspect. The re-
sulting sentiment representation benefits from the attention
mechanism for it overcomes the shortcoming of recurrent
neural networks (RNNs), which suffer from information loss
when only one single output (e.g., the output at the end of the
sequence) is used by the classifier.

Targeted Sentiment Analysis

Targeted sentiment analysis aims to analyze sentiment with
respect to targeted entities in the sentence. It is thus criti-
cal for targeted sentiment analysis methods, e.g., the target-
dependent LSTM (TDLSTM) and target connection LSTM

(TCLSTM) (Tang et al. 2016), to model the interaction be-
tween sentiment targets and the whole sentence. In order to
obtain the target-dependent sentence representation, TDL-
STM directly uses the hidden outputs of a bidirectional-
LSTM sentence encoders panning the target mentions, while
TCLSTM extends TDLSTM by concatenating each input
word vector with a target vector. Similar to ABSA, atten-
tion models are also applicable to targeted sentiment analy-
sis. Rather than using a single level of attention, deep mem-
ory networks (Tang, Qin, and Liu 2016) and recurrent at-
tention models (Chen et al. 2017) have achieved superior
performance by learning a deep attention over the single-
level attention, as multiple passes (or hops) over the input
sequence could refine the attended words again and again to
find the most important words. All existing approaches have
either ignored the problem of multiple target instances (or
words) or simply used an averaging vector over target ex-
pressions (Tang, Qin, and Liu 2016; Wang et al. 2017). Un-
like such approaches, our method weights each target word
with an attention weight so that a given target is represented
by its most informative components.

Targeted Aspect-Based Sentiment Analysis

Two baseline systems (Saeidi et al. 2016) are proposed to-
gether with SentiHood: a feature-based logistic regression
model and a LSTM-based model. The feature-based logistic
regression model uses feature templates including n-grams
tokens and POS tags extracted from the context of instances.
The LSTM baseline can be seen as an adaptation of TDL-
STM that simply uses the hidden outputs at the position of
target instances assuming that all target instances are equally
important.

Incorporating External Knowledge

External knowledge base has been typically used as a source
of features (Ratinov and Roth 2009; Rahman and Ng 2011;
Nakashole and Mitchell 2015). Most recently, neural se-
quential models (Ahn et al. 2016; Yang and Mitchell 2017)
leverage the lower-dimensional continuous representation of
knowledge concepts as additional inputs. However, these ap-
proaches have treated the computation of neural sequential
models as a black-box without tight integration of knowl-
edge and computational structure. The proposed model,
termed Sentic LSTM, is inspired by (Xu et al. 2016), which
adds a knowledge recall gate to the cell state of LSTM. How-
ever, our method differs from (Xu et al. 2016) in the way of
using external knowledge to generate the hidden outputs and
controlling the information flow.

Methodology

In this section, we describe the proposed attention-based
neural architecture in detail: we first proposed the task def-
inition of targeted ABSA, followed by an overview of the
whole neural architecture; afterwards, we describe instance
attention and global attention model; lastly, we describe the
proposed knowledge-embedded extension of LSTM cell.

5877



Task Definition

A sentence s consists of a sequence of words. Similar
to (Wang et al. 2017), we consider all mentions of the same
target as a single target. A target t composed of m words in
sentence s, denoted as T = {t1, t2,⋯, ti,⋯, tm} with ti re-
ferring to the position of ith word in the target expression,
the task of targeted ABSA can be divided into two subtasks.
Firstly, it resolves the aspect categories of t belonging to a
predefined set. Secondly, it classifies the sentiment polarity
with respect to each aspect category associated with t.

For example, the sentence “I live in [West London]
for years. I like it and it is safe to live in much of
[west London]. Except [Brent] maybe. ” contains two tar-
gets, [WestLondon] and [Brent]. Our objective is to de-
tect the aspects and classify the sentiment polarity. The
desired output for [WestLondon] is [‘general’:positive;
‘safety’:positive], while output for [Brent] should be [‘gen-
eral’:negative; ‘safety’:negative].

Overview

In this section, we provide an overview of the proposed
method. Our neural architecture consists of two compo-
nents: the sequence encoder and a hierarchical attention
component.

Fig. 1 illustrates how the neural architecture works. Given
a sentence s = {w1,w2,⋯,wL}, a look-up operation is first
performed to convert input words into word embeddings
{vw1 , vw2 ,⋯, vwL

}. The sequence encoder, which is based
on a bidirectional LSTM, transforms the word embeddings
into a sequence of hidden outputs. The attention component
is built on top of the hidden outputs. The target-level atten-
tion takes as input the hidden outputs at the positions of tar-
get expression (highlighted in brown) and computes a self-
attention vector over these words.

The output of target-level attention component is a repre-
sentation of the target. Afterwards, the target representation
together with the aspect embeddings is used for computing
a sentence-level attention transforming the whole sentence
into a vector. The sentence-level attention component re-
turns one sentence vector for each aspect and target pair. The
aspect-based sentence vector is then fed into the correspond-
ing multi-class (e.g., None, Neural, Negative, and Positive
for a 4-class setting; or None, Negative, and Positive for a
3-class setting) classifier to resolve the sentiment polarity.

Figure 1: Overview of the attentive neural architecture

Long Short-Term Memory Network

The sentence is encoded using an extension of RNN (Schus-
ter and Paliwal 1997), termed LSTM (Hochreiter and
Schmidhuber 1997), which was firstly introduced
by (Hochreiter and Schmidhuber 1997) to solve the
vanishing and exploding gradient problem faced by the
vanilla RNN. A typical LSTM cell contains three gates: for-
get gate, input gate and output gate. These gates determine
the information to flow in and flow out at the current time
step. The mathematical representations of the cell are as
follows:

fi = σ(Wf [xi, hi−1] + bf)
Ii = σ(WI[xi, hi−1] + bI)

C̃i = tanh(WC[xi, hi−1] + bC)

Ci = fi ∗Ci−1 + Ii ∗ C̃i

oi = σ(Wo[xi, hi−1] + bo)
hi = oi ∗ tanh(Ci)

(1)

where fi, Ii and oi are the forget gate, input gate and
output gate, respectively. Wf , WI , Wo, bf , bI and bo are
the weight matrix and bias scalar for each gate. Ci is the
cell state and hi is the hidden output. A single LSTM typ-
ically encodes the sequence from only one direction. How-
ever, two LSTMs can also be stacked to be used as a bidirec-
tional encoder, referred to as bidirectional LSTM. For a sen-
tence s = {w1,w2,⋯,wL}, bidirectional LSTM produces a
sequence of hidden outputs,

H = [h1, h2...hL] =
⎡⎢⎢⎢⎣

�→
h1

�→
h2 ⋯

�→
h L

←�
h1

←�
h2 ⋯

←�
h L

⎤⎥⎥⎥⎦
where each element of H is a concatenation of the cor-
responding hidden outputs of both forward and backward
LSTM cells.

Target-Level Attention

Based on the attention mechanism, we calculate an atten-
tion vector for a target expression. A target might consist
of a consecutive or non-consecutive sequence of words, de-
noted as T = {t1, t2,⋯, tm}, where ti is the location of an
individual word in a target expression. The hidden outputs
corresponding to T is denoted as H ′ = {ht1 , ht2 ,⋯, htm}.
We compute the vector representation of a target t as

vt =H ′α = ∑
j

αjhtj (2)

where the target attention vector α = {α1, α2,⋯, αm} is dis-
tributed over target word sequence T . The attention vector
α is a self-attention vector that takes nothing but the hidden
output itself as input. The attention vector α of target expres-
sion is computed by feeding the hidden output into a bi-layer
perceptron, as shown in Equation 3.

α = softmax(W (2)
a tanh(W (1)

a H ′)) (3)

where W (1)
a ∈ Rdm×dh and W

(2)
a ∈ R1×dm are parameters of

the attention component.
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Sentence-Level Attention Model

Following the target-level attention, our model learns a
target-and-aspect-specific sentence attention over all the
words of a sentence. Given a sentence s of length L, the
hidden outputs are denoted as H = [h1, h2,⋯, hL]. An at-
tention model computes a linear combination of the hidden
vectors into a single vector, i.e.,

vas,t =Hβ = ∑
i

βihi (4)

where the vector β = [β1, β2,⋯, βL] is called the sentence-
level attention vector. Each element βi encodes the salience
of the word wi in the sentence s with respect to the aspect a
and target T . Existing research on targeted sentiment analy-
sis or ABSA mostly uses targets or aspect terms as queries.

At first, each hi is transformed to a dm dimensional vec-
tor by a multi-layer neural network with a tanh activation
function, followed by a dense softmax layer to generate a
probability distribution over the words in sentence s, i.e.,

βa = softmax(vTa tanh(Wm(H ′ ⊙ vt))) (5)
where va is the aspect embedding of aspect a, H ⊙ vt is the
operation concatenating vt to each hi; W

(1)
m ∈ Rdm×dh is

the matrix mapping row vectors of H to a dm dimensional
space, and W

(2)
m ∈ R1×dm maps each new row vector to a

unnormalized attention weight.

Commonsense Knowledge

In order to improve the accuracy of sentiment classification,
we use commonsense knowledge as our knowledge source
to be embedded into the sequence encoder. In particular, we
use SenticNet (Cambria et al. 2016), a commonsense knowl-
edge base that contains 50,000 concepts associated with a
rich set of affective properties (Table 1). These affective
properties provide not only concept-level representation but
also semantic links to the aspects and their sentiment. For
example, the concept ‘rotten fish’ has property “KindOf-
food” that directly relates with aspects such as ‘restaurant’
or ‘food quality’, but also emotions, e.g., ‘joy’, which can
support polarity detection (Fig. 2).

However, the high dimensionality of SenticNet hinders
it from being used in deep neural models. AffectiveS-
pace (Cambria et al. 2015) has been built to map the con-
cepts of SenticNet to continuous low-dimensional embed-
dings without losing the semantic and affective relatedness
of the original space. Based on this new space of concepts,
we embed concept-level information into deep neural se-
quential models to better classify both aspects and sentiment
in natural language text.

Table 1: Example of SenticNet assertions

SenticNet IsA-pet KindOf-food Arises-joy ...

dog 0.981 0 0.789 ...
cupcake 0 0.922 0.910 ...
rotten fish 0 0.459 0 ...
police man 0 0 0 ...
win lottery 0 0 0.991 ...

Sentic LSTM

In order to leverage SenticNet’s affective commonsense
knowledge efficiently, we propose an affective extension of
LSTM, termed Sentic LSTM. It is reasonable to assume
that SenticNet concepts contain information complementary
to the textual word sequence as, by definition, common-
sense knowledge is about concepts that are usually taken for
granted and, hence, absent from text. Sentic LSTM aims to
entitle the concepts with two important roles: 1) assisting
with the filtering of information flowing from one time step
to the next and 2) providing complementary information to
the memory cell. At each time step i, we assume that a set of
knowledge concept candidates can be triggered and mapped
to a dc dimensional space. We denote the set of K concepts
as {μi,1, μi,2,⋯, μi,K}. First, we combine the candidate em-
beddings into a single vector as follows:

μi =
1

K
∑
j

μi,j (6)

As we realized that there are only up to 4 extracted con-
cepts for each time step, we simply use the average vector
(although a more sophisticated attention model can also be
easily employed to replace the averaging function).

fi = σ(Wf [xi, hi−1, μi] + bf)
Ii = σ(WI[xi, hi−1, μi] + bI)

C̃i = tanh(WC[xi, hi−1] + bC)

Ci = fi ∗Ci−1 + Ii ∗ C̃i

oi = σ(Wo[xi, hi−1, μi] + bo)
oci = σ(Wco[xi, hi−1, μi] + bco)
hi = oi ∗ tanh(Ci) + oci ∗ tanh(Wcμi)

(7)

Our affective extension of LSTM is illustrated in Equa-
tion 7. At first, we assume that affective concepts are mean-
ingful cues to control the information of token-level in-
formation. For example, a multi-word concept ‘rotten fish’
might indicate that the word ‘rotten’ is a sentiment-related
modifier of its next word ‘fish’ and, hence, less information
should be filtered out at next time step. We thus add knowl-
edge concepts to the forget, input, and output gate of stan-
dard LSTM to help filtering the information. The presence of
affective concepts in the input gate is expected to prevent the
memory cell from being affected by input tokens conflicting
with pre-existing knowledge. Similarly, the output gate uses
such knowledge to filter out irrelevant information stored in
the memory.

Another important feature of Sentic LSTM is based on
the assumption that the information from the concept-level
output is complementary to the token level. Therefore, we
extended the regular LSTM with an additional knowledge
output gate oci to output concept-level knowledge comple-
mentary to the token-level memory. Since AffectiveSpace is
learned independently, we leverage a transformation matrix
Wc ∈ Rdh×dμ to map it to the same space as the memory
outputs. In other words, oci models the relative contributions
of token level and concept level.
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Moreover, we notice that oci ∗ tanh(Wcμi) actually
resembles the functionality of the sentinel vector used
by (Yang and Mitchell 2017), which allows the model to
choose whether to use affective knowledge or not.

Prediction and Parameter Learning

The objective to train our classier is defined as minimizing
the sum of the cross-entropy losses of prediction on each
target-aspect pair, i.e.,

Ls =
1

∣D∣
∑
s∈D

∑
t∈s
∑
a∈A

log pac,t

where A is the set of predefined aspects, and pac,t is the prob-
ability of the gold-standard polarity class c given target t
with respect to a sentiment category a, which is defined by
a softmax function,

pac,t = softmax(W pvas,t + b
a
s)

where W p and bas are the parameters to map the vector rep-
resentation of target t to the polarity label of aspect a. To
avoid overfitting, we add a dropout layer with dropout prob-
ability of 0.5 after the embedding layer. We stop the training
process of our model after 10 epochs and select the model
that achieves the best performance on the development set.

Experiments

Dataset and Resources

We evaluate our method on two datasets: SentiHood (Saeidi
et al. 2016) and a subset of Semeval 2015 (Pontiki et al.
2015). SentiHood was built by querying Yahoo! Answers
with location names of London city. Table 2 shows statistics
of SentiHood. The whole dataset is split into train, test, and
development set by the authors. Overall, the entire dataset
contains 5,215 sentences, with 3,862 sentences containing
a single target and 1,353 sentences containing multiple tar-
gets. It also shows that there are approximately two third
of targets annotated with aspect-based sentiment polarity
(train set: 2476 out of 2977; test set:1241 out of 1898; de-
velopment set: 619 out of 955). On average, each sentiment-
bearing target has been annotated with 1.37 aspects. To show
the generalizability of our methods, we build a subset of the
dataset used by Semeval-2015. We remove sentences con-
taining no targets as well as NULL targets. To be compara-
ble with SentiHood, we combine targets with the same sur-
face form within the same sentence as mentions of the same
target. In total, we have 1,197 targets left in the training set
and 542 targets left in the testing set. On average, each target
has 1.06 aspects.

Table 2: SentiHood dataset

Train Dev Test

Targets 3,806 955 1,898
Targets w/ Sentiment 2,476 619 1,241
Aspects per Target(w/ Sentiment) 1.37 1.37 1.35

Figure 2: A sketch of SenticNet semantic network

To inject the commonsense knowledge, we use a syntax-
based concept parser1 to extract a set of concept candidates
at each time step, and use AffectiveSpace2 as the concept
embeddings. In case no concepts are extracted, a zero vector
is used as the concept input.

Experiment Setting

We evaluate our method on two sub-tasks of targeted ABSA:
1) aspect categorization and 2) aspect-based sentiment clas-
sification. Following Saeidi et al. (Saeidi et al. 2016), we
treat the outputs of aspect-based classification as hierarchi-
cal classes. For aspect categorization, we output the label
(e.g., in the 3-class setting, it outputs ‘Positive’, ‘Negative’,
or ‘None’) with the highest probability for each aspect. For
aspect-based sentiment classification, we ignore the scores
of ‘None’. For evaluating the aspect-based sentiment clas-
sification, we simply calculate the accuracy averaged over
aspects. We evaluate aspect categorization as a multi-label
classification problem so that results are averaged over tar-
gets instead of aspects.

We evaluate our methods and baseline systems using both
loose and strict metrics. We report scores of three widely
used evaluation metrics of multi-label classifier: Macro-F1,
Micro-F1, and strict Accuracy. Given the dataset D, the
ground-truth aspect categories of the target t ∈ D is denoted
as Yt, while the predicted aspect categories denoted as Ŷt.
The three metrics can be computed as

• Strict accuracy (Strict Acc.): 1
D ∑t∈D σ(Yt = Ŷt), where

σ(⋅) is an indicator function.

• Macro-F1 = 2Ma-P×Ma-R
Ma-P+Ma-R , which is based on Macro-

Precision (Ma-P) and Micro-Recall (Ma-R) with Ma-P
= 1
∣D∣ ∑t∈D

∣Yt∩Ŷt∣

Ŷt
, and Ma-R= 1

∣D∣ ∑t∈D
∣Yt∩Ŷt∣

Yt
.

• Micro-F1 = 2Mi-P×Mi-R
Mi-P+Mi-R , which is based on Micro-

Precision (Mi-P) and Micro-Recall (Mi-R), where Mi-
P= ∑t∈D ∣Yt∩Ŷt∣

∑t∈D Ŷt
, and Mi-R= ∑t∈D ∣Yt∩Ŷt∣

∑t∈D Yt
.

1http://github.com/senticnet
2http://sentic.net/downloads
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Table 3: System performance on SentiHood dataset

Aspect Categorization Sentiment
Strict Acc. (%) Macro F1 (%) Micro F1 (%) Sentiment Acc. (%)
dev test dev test dev test dev test

TDLSTM 50.27 50.83 59.03 58.17 55.72 55.78 82.60 81.82
LSTM + TA 54.17 52.02 62.90 61.07 60.56 59.02 83.80 84.29

LSTM + TA + SA 68.83 66.42 79.36 76.69 79.14 76.64 86.00 86.75
LSTM + TA + DMN SA 60.66 60.14 68.89 70.19 67.28 68.37 84.80 83.36

LSTM + TA + SA + KB Feat 69.38 64.76 80.00 76.33 79.79 76.08 87.00 88.70
LSTM + TA + SA + KBA 68.08 65.12 78.68 76.40 78.73 76.46 87.40 87.98
Recall LSTM + TA + SA 68.64 64.66 78.44 75.61 78.53 75.91 86.80 86.85
Sentic LSTM + TA + SA 69.20 67.43 78.84 78.18 79.09 77.66 88.80 89.32

Performance Comparison

We compare our proposed method with the methods that
have been proposed for targeted ABSA as well as methods
proposed for ABSA or targeted sentiment analysis but appli-
cable to targeted ABSA.

Furthermore, we also compare the performances of
several variants of our proposed method in order to high-
light our technical contribution. We run the model for
multiple times and report the results that perform best in the
development set. For Semeval-2015 dataset, we report the
results of the final epoch.

• TDLSTM: TDLSTM (Tang et al. 2016) adopts Bi-LSTM
to encode the sequential structure of a sentence and repre-
sents a given target using a vector averaged on the hidden
outputs of target instances.

• LSTM + TA: Our method learns an instance attention on
top of the outputs of LSTM to model the contribution of
each instance.

• LSTM + TA + SA: In addition to target instance attention,
we add a sentence-level attention to the model.

• LSTM + TA + DMN SA: The sentence-level attention
is replaced by a dynamic memory network with multi-
ple hops (Tang, Qin, and Liu 2016). We run the memory
network with different numbers of hops and report the re-
sult with 4 hops (best performance on development set of
SentiHood). We exclude the case of zero hops as it corre-
sponds to Bi-LSTM + TA + SA.

• LSTM + TA + SA + KB Feat: Concepts are fed into the
input layer as additional features.

• LSTM + TA + SA + KBA: This is an integration of the
method proposed by (Yang and Mitchell 2017), which
learns an attention over the concept embeddings (the em-
beddings are combined with the hidden output before be-
ing fed into the classifier).

• Recall LSTM + TA + SA: LSTM is extended with a re-
call knowledge gate as in (Xu et al. 2016).

• Sentic LSTM + TA + SA: The encoder is replaced with
the proposed knowledge-embedded LSTM.

The word embedding of the input layer is initialized by a
pre-trained skip-gram model (Mikolov et al. 2013) with 150
hidden units on a combination of Yelp3 and Amazon review
dataset (He and McAuley 2016) and 50 hidden units for the
bi-directional LSTM.

Results of Attention Model

Table 3 and Table 4 show the performance on SentiHood and
Semeval-15 dataset, respectively. In comparison with the
non-attention baseline (Bi-LSTM+Avg.), we can find that
our best attention-based model significantly improves as-
pect categorization (by more than 20%) and sentiment clas-
sification (approximately 10%) on SentiHood. However, it
is notable that, on the Semeval-2015 dataset, the improve-
ment is relatively smaller. We conjecture the reason is that
SentiHood has masked the target as a special word “LOCA-
TION”, which resulted less informative than the full name
of aspect targets that are used by Semeval-2015.

Hence, using only the hidden outputs regarding the target
does not suffice to represent the sentiment of the whole sen-
tence in SentiHood. Compared with target averaging model,
the target-level attention achieves some improvement (even
though not significant), as the target attention is capable of
identifying the part of target expressions with higher sen-
timent salience. On the other hand, it is notable that the
two-step attention achieves significant improvement on both
aspect categorization and sentiment classification, indicat-
ing that the target- and aspect-dependent sentence attention
could retrieve information relevant to both tasks.

To our surprise, using multiple hops in the sentence-level
attention fails to bring in any improvement. The perfor-
mance even falls down significantly on Semeval-2015 with
a much smaller number of training instances but larger as-
pect set than SentiHood. We conjecture the reason is that us-
ing multi-hops increases the number of parameter to learn,
which makes it less applicable to small and sparse datasets.

Visualization of Attention

We visualize the attention vectors of sentence-level attention
in Figure 3 with respect to “Transition-location” and “Price”
aspects. The two attention vectors have encoded quite differ-
ent concerns in the word sequence.

3http://yelp.com.sg/dataset/challenge
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Table 4: System performance on Semeval-2015 dataset

Aspect Categorization Sentiment
Strict Acc. Macro F1 Micro F1 Sentiment Acc.

TDLSTM 65.49 70.56 69.00 68.57
LSTM+TA 66.42 71.71 70.06 69.24

LSTM+TA+SA 63.46 70.73 66.18 74.28
LSTM+TA+DMN SA 48.33 52.73 51.39 69.07

LSTM+TA+SA+KB Feat 65.68 74.46 70.71 76.13
LSTM+TA+SA+KBA 67.34 74.36 71.78 73.10

Recall LSTM + TA + SA 66.05 72.90 69.66 74.11
Sentic LSTM + TA + SA 67.34 76.44 73.82 76.47

In the first example, the ‘Transition-location’ attention at-
tends to the word “long”, which is expressing a negative sen-
timent towards the target. In comparison, the ‘Price’ atten-
tion attends more to the word ‘cheap’, which is related to the
aspect. That is to say, the two attention vectors are capable
of distinguishing information related to different aspects. As
visualized in Figure 4, the target-level attention is capable of
selecting the part of target expression of which the aspect or
sentiment is easier to be resolved.

Results of Knowledge-Embedded LSTM

It can be seen from Table 3 and 4 that injecting knowl-
edge into the model improves the performance in general.
Since AffectiveSpace encodes the information about affec-
tive properties that are semantically related to the aspects, it
is reasonable to find out that it can improve performance on
both tasks. The results show that our proposed Sentic LSTM
outperforms baseline methods, even if not significantly.

An important outcome of the experiments is that Sentic
LSTM significantly outperforms a baseline (LSTM + TA +
SA + KB feat) feeding the knowledge features to the input
layer, which confirms the efficacy of using a knowledge out-
put gate to control the flow of background knowledge. Fur-
thermore, the superior performance of Sentic LSTM over
Recall LSTM and KBA indicates that the activated knowl-
edge concepts can also help filtering the information that
conflicts with the background knowledge.

Figure 3: Example of sentence-level attention

Figure 4: Example of target-level attention

Conclusion

In this paper, we proposed a neural architecture for the task
of targeted ABSA. We explicitly modeled the attention as a
two-step model which encodes targets and full sentence. The
target-level attention learns to attend to the sentiment-salient
part of a target expression and generates a more accurate
representation of the target, while the sentence-level atten-
tion searches for the target- and aspect-dependent evidence
over the full sentence. Moreover, we proposed an extension
of the LSTM cell so that it could more effectively incorpo-
rate affective commonsense knowledge when encoding the
sequence into a vector. In the future, we would like to collec-
tively analyze the sentiment of multiple targets co-occurring
in the same sentence and investigate the role of common-
sense knowledge in modeling the relation between targets.
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