Domain Adaptation Using Domain Similarity- and Domain Complexity-based Instance Selection for Cross-domain Sentiment Analysis

> Robert Remus rremus@informatik.uni-leipzig.de

> > Natural Language Processing Group Department of Computer Science University of Leipzig, Germany

IEEE ICDM SENTIRE-2012 — December 10, 2012

- Sentiment analysis and its subtasks are domain-dependent
 - \Box To overcome domain dependencies, a lot of NLP and ML research focuses on domain adaptation (DA): transfer a model from a source domain d_{src} to a target domain d_{tgt} with minimal performance loss
- We consider a domain as a genre attribute, that describes the topics sth. deals with, e.g.
 - $\hfill\square$ news articles (= genre) of different sections, e.g.
 - \Box sports or politics (= domains)

- [Ponomareva & Thelwall, 2012] hypothized, that the optimal parameter setting of their DA algorithm is related to the notions of domain similarity and domain complexity
 - □ domain similarity = corpus similarity
 - $\hfill\square$ domain complexity = corpus complexity
- Our idea: "Tailor" a d_{src} training set to a given d_{tgt} based on their similarity and complexity

Method — Measuring Domain Similarity

- Similarity of domains d_{src}, d_{tgt} is measured as Jensen-Shannon (JS) divergence between d_{src}, d_{tgt}'s term unigram distributions
 Unigram probabilities are estimated via relative frequencies
- JS divergence *D*_{JS} is based on Kullback-Leibler divergence *D*_{KL}:

$$D_{\mathsf{KL}}(Q||R) = \sum_{w \in W} Q(w) \log \frac{Q(w)}{R(w)} \tag{1}$$

where Q, R are probability distributions over a finite set W, e.g. words.

$$D_{\mathsf{JS}}(Q||R) = \frac{1}{2} \left[D_{\mathsf{KL}}(Q||M) + D_{\mathsf{KL}}(R||M) \right]$$
(2)

where $M=\frac{1}{2}(Q+R)$ is the average distribution of Q and R and $0\leq D_{\rm JS}(Q||R)\leq 1$

- Domain complexity is measured according to a procedure proposed by [Kilgarriff & Rose, 1998]:
 - 1. Shuffle corpus
 - 2. Split corpus into 2 equally-sized sub-corpora
 - 3. Measure similarity between sub-corpora
 - 4. Iterate and calculate mean similarity over all (here: 10) iterations
- Again, our similarity measure is JS divergence

 Goal: Automatically select d_{src} training instances, that are likely to help in estimation of a more accurate d_{tgt} model
 How many/which d_{src} training instances to select?

Assumptions:

- \Box The more similar d_{src} and d_{tgt} are, the more ...
- $\hfill\square$ The more the complexity varies among d_{src} and $d_{tgt},$ the less \ldots

 \ldots the d_{src} training data helps to estimate a more accurate d_{tgt} model &

 \Box The more similar a single d_{src} training instance is to a d_{tgt} , the more it helps to estimate a more accurate d_{tgt} model

1. d_{src} training instances are ranked acc. to their similarity to the d_{tgt} 2. A training set size reduction factor $r_{d_{src},d_{tat}}$ is estimated as

$$\tilde{r}_{d_{src},d_{tgt}} = 1.0 - \left(\alpha \cdot s_{d_{src},d_{tgt}} + \beta \cdot |\Delta c_{d_{src},d_{tgt}}|\right)$$
(3)

where

 $\begin{array}{l} \square \ s_{d_{src},d_{tgt}} \text{ is the domain similarity} \\ \square \ \Delta c_{d_{src},d_{tgt}} = c_{d_{src}} - c_{d_{tgt}} \text{ is the domain complexity variance} \\ \square \ \alpha,\beta \text{ are scaling parameters} \end{array}$

3. Top $100 \cdot \tilde{r}_{d_{src},d_{tat}}$ % instances are kept while the rest is discarded

- Task: Document-level cross-domain polarity classification in a semi-supervised setting
- Classifier: SVMs
 - □ Linear "kernel"
 - $\hfill\square$ Cost C fixed to 2.0, no further optimization
- Features encode word unigram absence/presence
 - \square No feature selection
 - $\hfill\square$ No feature weighting
 - $\hfill\square$ No further pre-processing
- Gold standard: Reviews from 10 domains of [Blitzer et al., 2007]'s Multi-domain Sentiment Dataset v2.0
- For each d_{src} - d_{tgt} pair:
 - $\hfill\square$ 2,000 labeled d_{src} instances, 200 labeled d_{tgt} instances for training
 - \square 1,800 labeled d_{tgt} instances for testing
 - \Box 2,000 unlabeled d_{tgt} instances for training (if required)

- Instance selection IS
- Baselines:
 - $\hfill\square$ "SrcOnly", "TgtOnly" and "All"
 - □ EA and EA++ [Daumé III, 2007, Daumé III et al., 2010]
- IS combined with EA/++: IS-EA, IS-EA++
- "Sanity checks"
 - \Box $IS_{r=0.8}$: fixed $\tilde{r}_{d_{src},d_{tgt}}$ of 0.8 (= average "optimal" r)
 - \Box IS_{random}: random $\tilde{r}_{d_{src},d_{tgt}}$; instance selection without ranking

- We experimented with different scaling parameter settings (Recall α scales domain similarity measure, β scales domain complexity variance):

 - $\hfill\square$ Best overall result when $\alpha=0.2,\ \beta=5.5$
 - $\hfill\square$ "Stable" results when $\alpha \in [0.2, 0.4]$ & $\beta \in [0.5, 5.5]$
 - $\hfill\square$ IS outperforms strongest baseline ("All") for when $\alpha \in [0.1, 0.8]$
- IS is successful without fine-tuning α, β!

Evaluation — Results II

Evaluation on all ^{10!}/_{(10-2)!} = 90 possible d_{src}-d_{tgt} pairs
 Averaged accuracy A:

Method	A
SrcOnly TgtOnly All	$72.2 \\ 68.43 \\ 74.25$
IS EA EA++	74.68 74.02 74.5
IS-EA IS-EA++	$73.74 \\ 74.28$

- IS is significantly better (p < 0.005) than all "SrcOnly", "TgtOnly", "All", IS_{random} (71.47), IS_{r=0.8} (74.31)
 - $\hfill\square$ Level of statistical significance is determined by "stratified shuffling"

- We proposed an approach to DA via instance selection, that is ...
 - $\hfill\square$ based on similarity and complexity variance of d_{src} and d_{tgt} $\hfill\square$ a pre-processing step before learning a model
- Future work: Apply IS to other cross-domain tasks, e.g. parsing, to answer whether . . .
 - \Box IS is general?
 - □ IS is task-bound or feature-specific?

Any questions?

(2007).

Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL).

- Blitzer, J., Dredze, M., & Pereira, F. (2007).
 Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification.
 In [acl, 2007], (S. 440–447).
- Daumé III, H. (2007).

Frustratingly easy domain adaptation. In [acl, 2007], (S. 256–263). Daumé III, H., Kumar, A., & Saha, A. (2010).
 Frustratingly easy semi-supervised domain adaptation.
 In Proceedings of the 2010 Workshop on Domain Adaptation for Natural Language Processing (DANLP) (S. 53–59).

 Kilgarriff, A. & Rose, T. (1998).
 Measures for corpus similarity and homogeneity.
 In Proceedings of the 3rd Conference on Empirical Methods in Natural Language Processing (EMNLP) (S. 46–52).

Ponomareva, N. & Thelwall, M. (2012).
 Do neighbours help? an exploration of graph-based algorithms for cross-domain sentiment classification.

In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing (EMNLP) and

Computational Natural Language Learning (CoNLL) (S. 655–665).