#### Interest Analysis using Semantic PageRank and Social Interaction Content

#### Chung-chi Huang and Lun-wei Ku

# Introduction: Motivation (1/2)

- Both content providers and consumers
  - E.g., movie reviews and etc.

There exists keyword extraction tools to digest information

- Need more
  - Highlighting the words that interest us/catch our eyes

## Introduction: Motivation (2/2)

• Keywords != words of interest

– Interesting words!=keywords

- Keywords: from authors' perspectives
  - I.e., the statistics of the article content alone

 Words of interest: need to combine readers' perspectives

## Introduction: Purpose (1/2)

- In this paper
  - Predict topic words catching readers' eyes after article reading
- In prediction
  - Social interaction data of great importance
    - Reader information not public
  - PageRank algorithm used to help
    - Consider semantic features

## Introduction: Purpose (2/2)

- These interesting words can be used
  - As social tags
  - In article recommendation
  - In sentiment analysis

#### Introduction: Example Web Post

| The article:                                                                                       |
|----------------------------------------------------------------------------------------------------|
| 府城.西 <u>市場(traditional market)謝宅(the old house)</u> 歡迎喜愛旅行與體驗 <u>生活(life</u>                       |
| <u>style</u> 的好朋友來玩;1905年淺草商場,台南人稱大菜市; 古老的布料行集散地,與迪化街齊名。雖沒落,但                                      |
| 昔日華麗 <u>市場(traditional market)</u> 仍保一絲光采。一群同樣熱愛 <u>台南(the historical city)老房子(the old</u>         |
| <u>house</u> )的夥伴,近10個月的懷胎,完成了這個夢想的空間。陡峭的樓梯,奇妙的格局                                                  |
| 口此契約屬於房屋不動產契約,支付的為房租 <u>費用(rental fees)</u> ,手繪 <u>私房地圖(exclusive map)</u>                         |
| 操業大家簡單而直接的去體驗與感受屬於原本純粹簡單的美好生活(life style)一棟四十多年的老房子(the old                                        |
| house)坐落在台南市(the historical city)紛擾喧鬧的市場(traditional market)中經歷過近十個月不斷的反覆討論與修正                     |
| 從此來台南(the historical city)晃盪的旅人們可以住在一個像家的地方                                                        |
| 早起喝碗 <u>牛肉湯(bouillon)</u> 吃菜粽帶個營養三明治中午到 <u>市場(traditional market)</u> 去嚐個虱目魚湯                      |
| 再轉進這數百年記憶的巷弄間尋找秘密的記憶 <u>台南(the historical city)</u> 府城.西 <u>市場(traditional market)謝宅(the old</u>   |
| <u>house)</u> 有四個樓層 可以基本住四個人                                                                       |
| Its social interaction content (i.e., its response posts):                                         |
| Post 1: 我想要預約12/19~12/20. 人數(head count)6~8個左右. 諸問:1.還有空房間嗎? 2.費用(rental fees)是多少?                 |
| Post 2: 我們 <u>人數(head count)</u> 有6人,是一群喜愛 <u>老房子(the old house)的學生</u> ,希望能親身體驗 <u>謝宅(the old</u> |
| house)的故事。想進一步了解相關資訊與 <u>費用(rental fees)</u> 。                                                     |
|                                                                                                    |
| Scores of interest preferences for words (w.r.t. the topic of the article):                        |
| 謝宅(the old house): 0.25, 台南(the historical city): 0.15, 生活(life style): 0.09,                      |
| 市場(traditional market): 0.05, 費用(rental fees): 0.0002,                                             |
| Top-ranked predicted words of interest for future readers:                                         |
| 1. 謝宝(the old house) 2. 費用(rental fees) 3. 台南(the historical city) 4. 市場(traditional market)       |

- Keyword extractors find frequent words
- Feedback covers topics of less-frequent/single-occurrence article words
- Combine article with feedback
  - Single-appearance word given more attention

## Method: PageRank on Web Pages

- PageRank introduced to find important web pages
  - Nodes: web pages
  - Edges: incoming and outgoing links
  - PageRank iterates to find the probability of a random walker landing on any web page



$$PR(i) = \frac{1-d}{N} + d \times \sum_{j:j \to i} \frac{w(j,i)}{\sum_{k:j \to k} w(j,k)} PR(j)$$

## Method: PageRank in Our Paper (1/5)

- Nodes: words in sentences
- Words within window size have edges
   Directed from words to words that follow
- Iteration formula

$$- PR(i) = (1 - d) \times IntPref(i) +$$

$$d \times \sum_{j:j \to i} \frac{w(j,i)}{\sum_{k:j \to k} w(j,k)} \operatorname{PR}(j)$$



# Method: PageRank in Our Paper (2/5)

- Semantic features of word nodes used
  - -(1) word group:
    - Intuition: content words (
      ) likely to be interests than function words (
      )
    - a) slightly content word centered model



• b) moderately content word centered model



• c) aggressively content word centered model



# Method: PageRank in Our Paper (3/5)

- Semantic features of word nodes used
  - (2) content source of a word pair:
    - Word pairs from articles



Word pairs from reader feedback



Both authors' and readers' voice are heard

## Method: PageRank in Our Paper (4/5)

- Semantic features of word nodes used
  - (3) words' degrees of reference:
    - Intuition: highly referenced words among authors and readers likely to be interests
    - A node weighted by 1+DR(the node)
    - DR(the node) defined as

num(reader response with the node) / num(reader response)

• Article counted as "a reader response"

## Method: PageRank in Our Paper (5/5)

Incorporate semantic features into PageRank

 $PR(i) = (1 - d) \times IntPref(i) + d \times \{\alpha \times \sum_{j:j \to i} \frac{w(j,i)}{\sum_{k:j \to k} w(j,k)} PR(j) \times (1 + DR(i)) + (1 - \alpha) \times \sum_{j:j \to i} \frac{w(j,i)}{\sum_{k:j \to k} w(j,k)} PR(j) \times (1 + DR(i)) \}$ 

### Method: Interest Preference Model

- Estimate topical interest preference score
- 1. Tfidf(w)
- 2. Pr(w|t)=freq(w,t)/freq(\*,t)
- 3. Pr(t|w)=freq(w,t)/freq(w,\*)
- 4. entropy(w)=  $-\sum_{t'} \Pr(t' \mid w) \times \log(\Pr(t' \mid w))$
- 5.  $Pr-Entropy(w|t) = Pr(w|t)/2^{entropy(w)}$
- 6.  $Pr-Entropy(t|w) = Pr(t|w)/2^{entropy(w)}$
- While PageRank uses local info, these use global

#### Method: Informativity of Reader Feedback

- Not all interaction content responds to the article
  - Check informativity of readers' response sentence and select informative ones
- 1) coverage:
  - Compute ngram coverages
    - To ensure the topic cohesion
  - BLEU: coverages weighted and favor longer ngrams
- 2) focus:
  - The percentage of words certain in topics
    - To have more focused topic

#### Experiments: Data Sets

6,600 articles collected from <u>www.wretch.cc</u>
 Along with their feedback

Most of the blog posts in Chinese
 – CKIP segmenter used for segmentation

• 30 articles for testing (avg 17.6 responses)

### **Experiments: Gold Standards**

• Two judges annotated interested words

- To evaluate our system on majority readers
  - Judges related to the responding readers and found their interests in their feedback
  - Only ½ replies responded with reader interest info and they covered one/two topic words in the articles

# Evaluation (1/4)

- Top-N nDCG, P, MRR used for evaluation
- Content-word weighting mechanisms

|         | nDCG | Р    | MRR  |
|---------|------|------|------|
| w/o     | .778 | .397 | .728 |
| agr@m=2 | .765 | .390 | .719 |
| agr@m=4 | .754 | .370 | .707 |
| mod@m=2 | .782 | .390 | .747 |
| mod@m=4 | .765 | .390 | .719 |
| slg@m=2 | .792 | .397 | .741 |
| slg@m=4 | .792 | .397 | .741 |

- Slightly performed the best; aggressive is too much

# Evaluation (2/4)

#### • Different window sizes

|      | WS=2 | WS=3 | WS=6 | WS=10 |
|------|------|------|------|-------|
| nDCG | .765 | .792 | .774 | .733  |
| Р    | .410 | .397 | .343 | .350  |
| MRR  | .736 | .741 | .741 | .686  |

• In blogosphere words bond in proximity

In contrast to large window size in news articles

# Evaluation (3/4)

• Estimation strategies for IntPref w/o reader feedback

| @ <i>N</i> =5      | nDCG   | Р    | MRR  |
|--------------------|--------|------|------|
| entropy            | .677   | .287 | .659 |
| tfidf              | .719   | .313 | .676 |
| PR+tf              | .657   | .310 | .632 |
| PR+Pr(w tp)        | .631   | .290 | .583 |
| PR+Pr(tp w)        | .673   | .317 | .639 |
| PR+PrEntropy(w tp) | .636   | .283 | .584 |
| PR+PrEntropy(tp w) | .773 🖌 | .337 | .725 |
| PR+tfidf           | .792   | .397 | .741 |

| @ <i>N</i> =3      | nDCG | Р    | MRR  |
|--------------------|------|------|------|
| entropy            | .667 | .356 | .644 |
| tfidf              | .651 | .389 | .638 |
| PR+tf              | .655 | .350 | .617 |
| PR+Pr(w tp)        | .562 | .328 | .539 |
| PR+Pr(tp w)        | .659 | .350 | .622 |
| PR+PrEntropy(w tp) | .562 | .328 | .539 |
| PR+PrEntropy(tp w) | .757 | .428 | .717 |
| PR+tfidf           | .767 | .506 | .728 |

- Entropy, tfidf beats PR+tf
- *PR+tfidf* achieves the best performance
- Entropy helps especially when better estimation is used

# Evaluation (4/4)

• We trained tfidf and PR+tfidf with social interaction content

| @ <i>N</i> =5                           | # sentences in | judges' interest | general readers' interest |      |      |
|-----------------------------------------|----------------|------------------|---------------------------|------|------|
|                                         | FB used        | nDCG             | hit rate                  | nDCG | MRR  |
| tfidf+FB <sub>none</sub> (=tfidf)       | 0              | .719             | .10                       | .087 | .075 |
| tfidf+FB <sub>all</sub>                 | 1314 (=100%)   | .699             | .10                       | .079 | .072 |
| PR+tfidf+FB <sub>none</sub> (=PR+tfidf) | 0              | .792             | .19                       | .137 | .122 |
| PR+tfidf+FB <sub>Coverage</sub>         | 393 (=30%)     | .803             | .34                       | .221 | .182 |
| PR+tfidf+FB <sub>Focus</sub>            | 476 (=36%)     | .766             | .28                       | .164 | .139 |
| PR+tfidf+FB <sub>Coverage+Focus</sub>   | 321 (=24%)     | .808             | .33                       | .210 | .177 |

- Using all reader feedback is no better than using none
- *Coverage* and *Focus* select useful data and contribute to interest analysis
  - *Coverage* boosts hit rate relatively by 240% and 79%
- The combination filters out <sup>3</sup>/<sub>4</sub> reader sentences
  - ¼ of the social data still help

### Future Work

- Word omission happens in blogosphere especially in reader responses
  - Recover these words

- Connection between reader sentiment and reader interest
  - Sentiment analysis on interaction content help interest analysis?
  - Interest analysis help on-topic sentiment detection?

## Conclusion

- Propose a work that predicts reader interest using
  - Semantic PageRank
  - Social data

- They are simple but helpful
  - Semantic features e.g., parts-of-speech and degrees of reference
  - Selection of informative reader responses
  - Topical interest preference model