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Abstract—The method of paired comparison is an established
method in psychology for assigning ranks or inherent score
values to different stimuli. This article describes how this method
can be used for building a sentiment lexicon and for extending
the lexicon with arbitrary new words. An initial lexicon with
n = 200 German words is created from a two-fold all-pair
comparison experiment with ten different test persons. A cross-
validation experiment suggests that only two-fold log2(n)+8 = 16
comparisons are necessary to estimate the score of a new, yet
unknown word. We make the new lexicon available and compare
it with the corpus-based lexica SentiWS and SenticNet.

I. INTRODUCTION

A sentiment lexicon is a dictionary that assigns each term
a polarity score representing the strength of the positive or
negative affect associated with the term. In general, word
polarity strength depends on the context, and its represen-
tation by a single number can therefore only be a crude
approximation. Nevertheless, such sentiment lexica are an
important tool for opinion mining and have been proven to be
very useful. Examples for recent use cases are the sentiment
analysis of tweets and SMS [1] or the political classification
of newspapers [2].

There are two approaches to building a sentiment lexicon:
corpus based automatic assignment or manual annotation.
Corpus based approaches start with a set of seed words of
known polarity and extend this set with other words occurring
in a text corpus or a synonym lexicon. One possible approach
is to compute the “Pointwise Mutual Information” (PMI)
[3] from cooccurrences of seed words and other words. The
German sentiment lexicon SentiWS [4] was built in this way.
A more sophisticated corpus-based method was implemented
for SenticNet [5], [6]. Such methods can even be extended to
automatically assign emotion categories to terms [7].

Corpus based methods have the advantage of building large
lexica in an automated way without time consuming exper-
iments with human annotators. They have two drawbacks,
however: due to peculiarities in the corpus, some words
can obtain strange scores. In SentiWS 1.8, e.g., “gelungen”
(successful) has the highest positive score (1.0) while the more
positive word “fantastisch” (fantastic) only has a score of
0.332. In SenticNet 3.0, “inconsequent” has a strong positive
polarity (0.948). Moreover, it is not possible to assign a score
value to words that are absent from the corpus.

Assigning polarity scores by manual annotations can be
done in two different ways. One is by direct assignment of
an ordinal score to each word on a coarse scale. In this

way, Wilson et al. have created a subjectivity lexicon with
English words [8], which has also been used by means of
automated translations for sentiment analysis of German texts
[9]. The other method is to present words in pairs and let the
observer decide which word is more positive or more negative.
Comparative studies for other use cases have shown that
scores from paired comparisons are more accurate than direct
assignments of scores [10]. The main advantage is their in-
variance to scale variances between different test persons. This
is especially important when words are added at some later
point when the original test persons are no longer available.
Unfortunately, paired comparisons are much more expensive
than direct assignments: for n words, direct assignments only
require O(n) judgments, while a complete comparison of all
pairs requires O(n2) judgments. For large n, this becomes
prohibitive and must be replaced by incomplete comparisons,
i.e. by omitting pairs. Incomplete paired comparisons are
widely deployed in the estimation of chess players’ strength
[11], [12].

In the present paper, we propose a method for building a
sentiment lexicon from paired comparisons in two steps. At
first, an initial lexicon is built from a limited set of 200 words
by comparison of all pairs. This lexicon is then subsequently
extended with new words, which are only compared to a lim-
ited number of words from the initial set, which are determined
based on Silverstein & Farrell’s sorting method [13]. Sec. II
provides an overview over the mathematical methods of the
method of paired comparisons, Sec. III describes the criteria
for choosing the initial set of words and our experimental
setup, and Sec. IV presents the results for the initial lexicon,
compares it to SentiWS and SenticNet, and evaluates a method
for adding new words. The new lexicon will be made available
on the authors’ website.

II. METHOD OF PAIRED COMPARISON

The method of paired comparison goes back to the early
20th century [14]. See [12] for a comprehensive presentation
of the model and its estimation problems, and [15] for a review
of recent extensions. Applied to word polarity, it makes the
assumption that each word wi has a hidden score (or rating) ri.
The probability that wi is more positive than wj (symbolically:
wi > wj) in a randomly chosen context depends on the
difference between the hidden scores:
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Fig. 1. Different choices for the cumulative distribution function F with
identical standard deviations σ = 1/

√
3.

P (wi > wj) = F (ri − rj − t) (1a)
P (wi ≈ wj) = F (ri − rj + t)− F (ri − rj − t) (1b)
P (wi < wj) = F (rj − ri − t) (1c)

where (−t, t) is the draw width, and F is the cumulative
distribution function of a zero-symmetric random variable.
Thurstone’s model [14] uses an F based on the normal
distribution, a model that can be derived from the assumption
that the polarity of a word wi is normally distributed around its
mean inherent score ri. Although this is the only model with
a sound statistical justification, simpler distribution functions
have also been used for convenience, e.g. the logistic distribu-
tion (Bradley-Terry model) or the uniform distribution, which
is the only one which strictly limits the range of the rating
differences ri − rj (see Fig. 1). The standard deviation σ of
the distribution function is a scale parameter that determines
the range of the ratings ri.

As the probabilities in Eq. (1) only depend on rating
differences, the origin r = 0 cannot be determined from
the model, but must be defined by an external constraint.
Typical choices are the average rating constraint

∑
i ri = 0,

or the reference object constraint, i.e. ri = 0 for some i.
For sentiment lexica, a natural constraint can be obtained by
separately classifying words into positive and negative words
and choosing the origin in such a way that the scores from the
paired comparison model coincide with these classifications.

The ratings ri and the draw-width t must be estimated from
the observed comparisons. During our two steps of building a
sentiment lexicon, two different estimation problems occur:

1) Estimation of one unknown r of a new word from
m comparisons with old words with known ratings
qi, . . . , qm.

2) Estimation of t and all unknown r1 . . . , rn from round-
robin pair comparisons.

Estimators with desirable properties are generally obtained
from maximizing the (log) likelihood function, which can
only be done numerically in the above cases. Alternatively,
approximate analytic formulas for estimating the parameters

can be obtained with the “generalized method of moments” as
outlined in the following two subsections.

A. Case 1: one unknown rating r

Let us first consider this simpler case. The idea of the
generalized method of moments is to set the measured value
of an observable equal to its expectation value and solve
the resulting equation for the parameters. Following [12], we
choose as an observable a combination of the number of wins
W of the new word and the number of draws D, which we
set equal to its expectation values

W =

m∑
i=1

F (r − qi − t) (2a)

D =

m∑
i=1

(
F (r − qi + t)− F (r − qi − t)

)
(2b)

For small t, we can make a Taylor expansion of the right
hand sides of Eq. (2) around t = 0, and, for the combination
W +D/2, the term linear in t vanishes:

W +D/2 ≈
m∑
i=1

F (r − qi) (3)

With Elo’s approximation1 ∑m
i=1 F (r − qi) ≈ m · F (r − q)

[11], this can be solved for r in closed form:

r ≈ q + F−1
(W +D/2

m

)
with q =

1

m

m∑
i=1

qi (4)

An alternative solution can be obtained by numerically max-
imizing the log-likelihood function l(r) (t is considered as
given):

l(r) =
∑
wins

logF (r − qi − t) (5)

+
∑
draws

log
(
F (r − qi + t)− F (r − qi − t)

)
+
∑
losses

logF (qi − r − t)

B. Case 2: all ratings (ri)
n
i=1 and t unknown

Again, we obtain an approximate estimator with the gener-
alized method of moments by considering for each word wi
the total score Si from k-fold round-robin comparisons as an
observable

Si = Wi︸︷︷︸
wins

+
1

2
( Di︸︷︷︸

draws

+ k︸︷︷︸
self

) (6)

and setting it equal to its expectation value. With a Taylor
approximation around t = 0 and Elo’s approximation, we
obtain

Si ≈ k
n∑
j=1

F (ri − rj) ≈ knF (ri − r) (7)

1This holds exactly for the uniform distribution, but is only a crude
approximation for the Thurstone or Bradley-Terry model.
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Fig. 2. Graphical user interface for score assignment as seen by the test persons.

where r =
∑
j rj/n is the average rating of all words. Joint

estimates for all ratings can then be obtained by minimizing
the sum of the squared deviations

SS(r1, . . . , rn) =

n∑
i=1

(
Si − knF (ri − r)

)2
(8)

The minimum of expression (8) can be given in closed form
because (8) is exactly zero for (note that r can be chosen
arbitrarily, as explained in section II):

ri = r + F−1(Si/kn) with r =
1

n

n∑
j=1

rj (9)

To obtain an approximate estimator for the draw width t, let
us consider the total number of draws Di of each word wi
as an observable and set it equal to its expectation value in a
k-fold round robin experiment:

Di = k
∑
j 6=i

(
F (ri − rj + t)− F (ri − rj − t)

)
(10)

Keeping only the first non-zero term in a Taylor expansion
around t = 0 of the sum on the right hand side yields∑
j 6=i

(
F (ri−rj+t)−F (ri−rj−t)

)
≈ 2t

∑
j 6=i

F ′(ri−rj) (11)

Again, we can determine t by minimizing the sum of the
squared deviations

SS(t) =

n∑
i=1

Di − 2kt

n∑
j 6=i

F ′(ri − rj)

2

(12)

The minimum of expression (12) can be found analytically by
solving for the zero of SS′(t), which yields

t =

∑n
i=1 fiDi/2∑n
i=1 f

2
i

with fi = k
∑
j 6=i

F ′(ri − rj) (13)

The approximate solution (9) and (13) can then be used as a
starting point for maximizing the log-likelihood function

l(r1, . . . , rn, t) =
∑

comparisons
with wi>wj

logF (ri − rj − t) (14)

+
∑

comparisons
with wi≈wj

log
(
F (ri − rj + t)− F (ri − rj − t)

)

It should be noted that, due to the large number of n + 1
parameters, numerical methods for maximizing (14) might not
work reliably. In this case, the approximate solution (9) and
(13) should be used.

III. EXPERIMENTAL DESIGN

To select 200 words for building the initial lexicon from
round robin pair comparisons, we have started with all 1 498
adjectives from SentiWS [4]. To build an intersection of
these words with SenticNet [5], we translated all words into
English with both of the German-English dictionaries from
www.dict.cc and www.freedict.org, and removed all words
without a match in SenticNet. From the remaining 1 303
words, we selected manually 10 words that appeared strongly
positive to us, and 10 strongly negative words. This was to
make sure that the polarity range is sufficiently wide in the
initial lexicon. The remaining words were ranked by their
SentiWS score and selected with equidistant ranks, such that
we obtained 200 words, with an equal number of positive and
negative words according to SentiWS.

We then let ten different test persons assign polarity scores
to these words in two different experiments. The first one
consisted of direct assignment of scores on a five degree scale
(see Fig. 2(a)), which resulted in ten evaluations for each word.
An average score was computed for each word by replacing
the ordinal scale with a metric value (−1 = strong negative,
−0.5 = weak negative, 0 = neutral, 0.5 = weak positive, 1.0
= strong positive).

The second experiment consisted of twofold round robin
paired comparisons, with all 2 ·19 900 pairs evenly distributed
among the ten test persons, such that each person evaluated
3 980 pairs. See Fig. 2(b) for the graphical user interface pre-
sented to the test persons. The scores were computed with the
method-of-moments solution from section II-B. The standard
deviation of the normal distribution was set to σ = 1/

√
3,

which corresponds to the distribution function in Fig. 1. For
a reasonable choice for the origin r = 0, we shifted all scores
such that they best fitted to the discrimination between positive
and negative words from the direct comparison experiment. To
be precise: when r′i is the score from the direct assignment and
ri the score from the paired comparisons with an arbitrarily set
origin, we chose the shift value ρ that minimized the squared
error

SE(ρ) =
∑

sign(ρ+ri)6=sign(r′i)

(ρ+ ri)
2 (15)



Algorithm 1 One-fold addition of new word
Input: word w with unknown rating r, words

~v = (v1, . . . , vn) sorted by their known ratings q1, . . . , qn
Output: new rating r

1: il ← 1 and ir ← n
2: i← b(il + ir)/2c
3: m0 ← 0
4: ~q ← ()
5: ~u← ~v
6: while i > il and i < ir do . binary search
7: m0 ← m0 + 1
8: ~q ← ~q ∪ qi
9: s← score from w versus vi comparison,

10: where win counts 1 and draw counts 1/2
11: S ← S + s
12: ~u← ~u \ vi
13: if s > 1/2 then
14: il ← i
15: else
16: ir ← i
17: end if
18: i← b(il + ir)/2c
19: end while
20: r0 ← mean(~q) + F−1(S/m0) . first guess
21: ~u← m words in ~u with closest ratings to r0
22: ~q ← ~q ∪ ratings of ~v
23: S ← S+ total score of w against words from ~u
24: r ← mean(~q) + F−1(S/(m0 +m)) . cf. Eq. (4)
25: return r

For adding new words, we implemented the method by
Silverstein & Farrell, which uses comparison results to sort
the new word into a binary sort tree built from the initial
words [13]. For n initial words, this only leads to log2(n)
comparisons, which generally are too few for computing a
reliable score. We therefore extended this method by adding
comparisons with the m words from the initial set which
have the closest rank to the rank obtained from the sort tree
process. Algorithm 1 lists the resulting algorithm in detail.
This algorithm can be applied sequentially to more than
one test person by estimating the resulting rating from all
scores obtained from all test persons with Eq. (4). We have
evaluated this method with a leave-one-out experiment using
the comparisons from our two-fold round-robin comparison
experiment.

IV. RESULTS

A. Score values

It turned out that all maximization algorithms provided by
the R-package optimx failed to maximize the log-likelihood
function (14). We therefore used the approximate solution
given by (9) and (13). To get an idea of the difference
between both solutions, we compared them for a well-studied
much smaller paired-comparison experiment, the student pref-
erence data for the Community of European Management

212 round-robin all 303
MM/Elo ML ML

school ri σJK ri σJK ri
London 0.555 0.038 0.632 0.046 0.588
Paris 0.177 0.045 0.193 0.050 0.156
Barcelona -0.047 0.042 -0.064 0.046 -0.078
St.Gallen -0.120 0.046 -0.121 0.051 -0.086
Milano -0.147 0.041 -0.176 0.045 -0.169
Stockholm -0.417 0.039 -0.465 0.044 -0.410
t 0.162 0.016 0.166 0.016 0.153

TABLE I
CEMS PREFERENCE SCORES FROM METHOD-OF-MOMENTS (MM/ELO)

AND MAXIMUM-LIKELIHOOD (ML).

Schools (CEMS) [16]. The data is available in the R Package
BradleyTerry22 and was also used as an example in the
review by Cattelan [15]. Theoretically, it should include all-
pair preference choices between six management schools made
by 303 students, but as 91 students missed answering some
questions, it actually only includes 212 students performing a
full round-robin comparison. This means that we effectively
only have a 212-fold round-robin experiment.

We have computed the rating estimators from these 212
students both with the approximate method-of-moments and
maximum-likelihood, and estimated the standard error with
the jackknife variance σ2

JK [17] by cyclic omission of one
student. All ratings were normalized to zero mean, and F was
chosen as a standard normal distribution3. The results are listed
in Table I together with the maximum-likelihood estimators
obtained from all 303 students including those students with
missing answers in the last column. The difference between
the different estimators is smaller than the estimated standard
error in most cases, with the method-of-moments estimator
surprisingly even closer on average to the estimator in the last
column. We therefore conclude that the approximate method-
of-moments estimators works well for estimating ratings from
round-robin comparisons.

For the 200 words, we estimated the polarity ratings with the
approximate method-of-moments with the three distribution
functions of Fig. 1. The draw width t turned out to be 0.128
for the normal distribution, 0.119 for the logistic distribution,
and 0.146 for the uniform distribution. Fig. 3 shows a kernel
density plot [18] for the resulting score distributions. The
valley around zero (neutrality) is due to the fact that the
words were drawn from the SentiWS data which only contains
positive or negative words. The comparative shapes are as
expected from Fig. 1: the steeper the slope of the distribution
F (x) at x = 0, the more condensed are the resulting scores.

It is interesting to compare the scores from paired compar-
isons for words which have obtained the same score from di-
rect assignment on the five grade scale. The examples in table
II show that the paired comparisons indeed lead to a different
and finer rating scheme than averaging over coarse polarity

2http://cran.r-project.org/package=BradleyTerry2
3The choice σ = 1 was made for compatibility with the results reported

by Cattelan in [15], which are identical to the last column in Table I when
normalized to zero mean instead of zero minimum.
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Fig. 3. Kernel density plot of the polarity score distribution in our sentiment
lexicon for different cumulative distribution functions F .

adjective rdirect rpaired σJK
paradiesisch (paradisaical) 1.00 0.872 0.074
wunderbar (wonderful) 1.00 0.816 0.071
perfekt (perfect) 0.95 1.001 0.086
traumhaft (dreamlike) 0.95 0.955 0.081
prima (great) 0.75 0.684 0.063
zufrieden (contented) 0.75 0.495 0.055
kinderleicht (childishly simple) 0.50 0.348 0.051
lebensfähig (viable) 0.50 0.249 0.048
ausgeweitet (expanded) 0.05 -0.008 0.046
verbindlich (binding) 0.00 0.091 0.039
kontrovers (controversial) -0.05 -0.175 0.047
unpraktisch (unpractical) -0.50 -0.279 0.046
rüde (uncouth) -0.50 -0.517 0.052
falsch (wrong) -0.75 -0.515 0.055
unbarmherzig (merciless) -0.75 -0.688 0.055
erbärmlich (wretched) -1.00 -0.728 0.055
tödlich (deadly) -1.00 -1.028 0.062

TABLE II
EXAMPLE SCORES FROM AVERAGE DIRECT ASSIGNMENT AND PAIRED

COMPARISONS WITH THE NORMAL DISTRIBUTION.

scores from direct assignments, and that they also can lead to a
reversed rank order (see, e.g., “traumhaft” and “wunderbar”).
We have also estimated the variances of the polarity score
estimates as the jackknife variance σ2

JK via cyclic omission
of one word. These can be used to test whether, for ri > rj ,
the score difference is significant by computing the p-value
1 − Φ

(
(ri − rj)/

√
σ2
i + σ2

j

)
, where Φ is the distribution

function of the standard normal distribution. For the words
“unpraktisch” and “rüde”, e.g., the p-value is 0.0003, which is
smaller than 5% and the difference is therefore statistically sig-
nificant. The probability that “unpraktisch” is considered less
negative than “rüde” is F (−0.279−(−0.517)−0.128) = 0.58.

B. Adding new words

To obtain a lower bound for the error in estimating scores
for unknown words, we have first computed the scores for
all words with the estimators for one unknown rating r as
described in section II-A, where each word was compared
with all other words and the scores qi for other words were
considered to be known from the results in the preceding

0 50 100 150 200

0
.0

5
0
.1

0
0
.1

5

number of neighbors

e
rr

o
r

Fig. 4. Mean absolute error (MAE) from leave-one-out as a function of the
number of additional comparisons after Silverstein & Farrell’s method.

section. The mean absolute error with respect to the known
score was much higher for the maximum-likelihood estimator
(0.1444) than for method-of-moments estimator (0.008). This
does not necessarily mean that the method-of-moments esti-
mator is better, but it may be due to the fact that the “ground
truth score” was also computed with the method-of-moments
based on a similar observable. We therefore have used the
method-of-moments estimator in the subsequent evaluations.

For a reasonable recommendation for the number of in-
complete comparisons, we have varied the number m of
neighboring scores after sorting in the unknown word with
Silverstein & Farrell’s method (see section III). The results
are shown in Fig. 4. It is interesting to observe that adding
comparisons with similar scores first improves the accuracy,
but leads to slight deterioration when too many similar words
are added. The local minimum in Fig. 4 occurs at m = 8 with
a mean absolute error of 0.0582. This effect deserves further
investigation. A possible explanation for this behavior could
be that we only had two results for each comparison, which are
not sufficiently representative for comparisons of words with
similar scores. Nevertheless, adding similar words after a first
guess based on Silverstein & Farrel’s method leads to a smaller
error than choosing comparison words at random: in a 100-
fold Monte-Carlo experiment with choosing log2(n)+m ≈ 16
words at random, we obtained a mean absolute error of 0.0840.

It should be noted that the error of 0.0582 is close to the
standard deviations for the scores given in Table II and is about
half the draw width. We therefore conclude that incomplete
comparisons with only 16 out of 200 words provides a
reasonably accurate score estimate, provided the words are
selected with our method.



choice for F
normal logistic uniform

direct rp = 0.968 rp = 0.961 rp = 0.979
SentiWS rp = 0.709 rp = 0.707 rp = 0.710
SenticNet rp = 0.741 rp = 0.732 rp = 0.763

TABLE III
PEARSON CORRELATION rp OF THE PARITY SCORES FROM THE PAIRED
COMPARISON WITH THAT OF DIRECT ASSIGNMENT AND CORPUS-BASED

METHODS.

C. Comparison to corpus-based lexica

The polarity scores computed in our experiments provide
nice ground truth data for the evaluation of corpus-based
polarity scores. We therefore compared the scores from Sen-
tiWS 1.8 and SenticNet 3.0 with the scores computed from
test person answers. SenticNet only contains English words,
from which we have computed scores for the German words
by translating each German word with both of the German-
English dictionaries from www.dict.cc and www.freedict.org
and by averaging the corresponding scores.

A natural measure for the closeness between lists of polarity
scores is Pearson’s correlation coefficient rp, which has the
advantage that it is invariant both under scale and translation
of the variables. This is crucial in our case, because score
values from paired comparisons allow for arbitrary shift and
scale as explained in section II. rp is highest for a linear
relationship and smaller for other monotonous relationships.
As can be seen in Table III, this means that its value depends
on the shape of the model distribution function F . Whatever
function is used, the correlation between the scores from direct
assignment and paired comparison is very strong. This was to
be expected, because both values stem from test persons.

The correlation with the paired scores is higher for Sentic-
Net than for SentiWS. According to the significance tests in
the R package cocor [19], this difference is not significant,
however, on a 5% significance level. From the density plot in
Fig. 5 and the scatter plots in Fig. 6, it is nevertheless easily
understandable that SenticNet is slightly stronger correlated
to the true polarity scores than SentiWS. As can be seen in
Fig. 6, SentiWS has many identical scores with values 0.0040
and −0.0048. This peculiar distribution of the SentiWS scores
was also observed in the original paper presenting the SentiWS
data set by Remus et al. (see Fig. 1 in [4]). The identical
scores show up in Fig. 5 as a peak around neutrality, which
corresponds to a valley (sic!) in the score distribution from
paired comparisons. They do not have such a strong effect on
the correlation coefficient rp, because the identical values also
lead to a lower standard deviation (0.32 for SentiWS versus
0.44 for SenticNet), which is part of the denominator of rp.
Based on these observations, we consider the polarity scores
from SenticNet (via automatic translation) more reliable than
the scores from SentiWS.

V. CONCLUSIONS

The new sentiment lexicon from paired comparison is a
useful resource that can be used for different aims. It can
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Fig. 5. Kernel density plots of the polarity score distributions.
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Fig. 6. Scatter plots comparing corpus-based scores with scores from paired
comparisons.

be used, e.g., as ground truth data for testing and comparing
automatic corpus-based methods for building sentiment lexica,
as we did in section IV-C. Or it can be used as a starting point
for building specialized lexica for polarity studies. The method
for adding new words makes the method of paired comparison
applicable to studies with an arbitrary vocabulary because it
yields accurate polarity scores even for rare words.

Although the new sentiment lexicon is ready to be used,
there are still two points in the method of paired comparison
that require further research. One is the development of
a robust numerical maximum-likelihood estimator that also
works in the presence of draws and in the case of a large
number of parameters. The other one is an explanation of the
local minimum in Fig. 4: is this a general effect of our method
for choosing words for comparison, or is it a peculiarity in our
data?

The ratings presented in Table II have been calculated
with the Thurstone model, which is the only model with a
sound statistical justification. It might nevertheless be attrac-
tive in practice to use the uniform distribution, because it
has a stronger correlation both with the scores from direct
assignment and with the scores from SentiWS and SenticNet.
Moreover it restricts the polarity scores to a limited range even
in the presence of strongly positive or strongly negative words.
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