Sentiment Lexica from Paired Comparisons

Christoph Dalitz and Katrin E. Bednarek Institute for Pattern Recognition Niederrhein University of Applied Sciences, Reinarzstr. 49, 47805 Krefeld, Germany Email: christoph.dalitz@hsnr.de

Abstract—The method of paired comparison is an established method in psychology for assigning ranks or inherent score values to different stimuli. This article describes how this method can be used for building a sentiment lexicon and for extending the lexicon with arbitrary new words. An initial lexicon with n = 200 German words is created from a two-fold all-pair comparison experiment with ten different test persons. A cross-validation experiment suggests that only two-fold $\log_2(n)+8=16$ comparisons are necessary to estimate the score of a new, yet unknown word. We make the new lexicon available and compare it with the corpus-based lexica SentiWS and SenticNet.

I. INTRODUCTION

A *sentiment lexicon* is a dictionary that assigns each term a *polarity score* representing the strength of the positive or negative affect associated with the term. In general, word polarity strength depends on the context, and its representation by a single number can therefore only be a crude approximation. Nevertheless, such sentiment lexica are an important tool for opinion mining and have been proven to be very useful. Examples for recent use cases are the sentiment analysis of tweets and SMS [1] or the political classification of newspapers [2].

There are two approaches to building a sentiment lexicon: *corpus based* automatic assignment or *manual annotation*. Corpus based approaches start with a set of seed words of known polarity and extend this set with other words occurring in a text corpus or a synonym lexicon. One possible approach is to compute the "Pointwise Mutual Information" (PMI) [3] from cooccurrences of seed words and other words. The German sentiment lexicon *SentiWS* [4] was built in this way. A more sophisticated corpus-based method was implemented for *SenticNet* [5], [6]. Such methods can even be extended to automatically assign emotion categories to terms [7].

Corpus based methods have the advantage of building large lexica in an automated way without time consuming experiments with human annotators. They have two drawbacks, however: due to peculiarities in the corpus, some words can obtain strange scores. In SentiWS 1.8, e.g., "gelungen" (*successful*) has the highest positive score (1.0) while the more positive word "fantastisch" (*fantastic*) only has a score of 0.332. In SenticNet 3.0, "inconsequent" has a strong positive polarity (0.948). Moreover, it is not possible to assign a score value to words that are absent from the corpus.

Assigning polarity scores by manual annotations can be done in two different ways. One is by direct assignment of an ordinal score to each word on a coarse scale. In this

way, Wilson et al. have created a subjectivity lexicon with English words [8], which has also been used by means of automated translations for sentiment analysis of German texts [9]. The other method is to present words in pairs and let the observer decide which word is more positive or more negative. Comparative studies for other use cases have shown that scores from paired comparisons are more accurate than direct assignments of scores [10]. The main advantage is their invariance to scale variances between different test persons. This is especially important when words are added at some later point when the original test persons are no longer available. Unfortunately, paired comparisons are much more expensive than direct assignments: for n words, direct assignments only require O(n) judgments, while a complete comparison of all pairs requires $O(n^2)$ judgments. For large n, this becomes prohibitive and must be replaced by incomplete comparisons, i.e. by omitting pairs. Incomplete paired comparisons are widely deployed in the estimation of chess players' strength [11], [12].

In the present paper, we propose a method for building a sentiment lexicon from paired comparisons in two steps. At first, an initial lexicon is built from a limited set of 200 words by comparison of all pairs. This lexicon is then subsequently extended with new words, which are only compared to a limited number of words from the initial set, which are determined based on Silverstein & Farrell's sorting method [13]. Sec. II provides an overview over the mathematical methods of the method of paired comparisons, Sec. III describes the criteria for choosing the initial set of words and our experimental setup, and Sec. IV presents the results for the initial lexicon, compares it to SentiWS and SenticNet, and evaluates a method for adding new words. The new lexicon will be made available on the authors' website.

II. METHOD OF PAIRED COMPARISON

The method of paired comparison goes back to the early 20th century [14]. See [12] for a comprehensive presentation of the model and its estimation problems, and [15] for a review of recent extensions. Applied to word polarity, it makes the assumption that each word w_i has a hidden score (or rating) r_i . The probability that w_i is more positive than w_j (symbolically: $w_i > w_j$) in a randomly chosen context depends on the difference between the hidden scores:

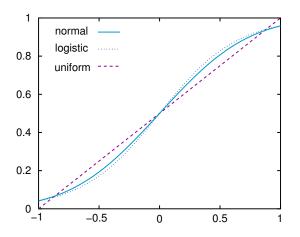


Fig. 1. Different choices for the cumulative distribution function F with identical standard deviations $\sigma = 1/\sqrt{3}$.

1

$$P(w_i > w_j) = F(r_i - r_j - t)$$
(1a)

$$P(w_i \approx w_j) = F(r_i - r_j + t) - F(r_i - r_j - t)$$
 (1b)

$$P(w_i < w_j) = F(r_j - r_i - t) \tag{1c}$$

where (-t, t) is the *draw width*, and *F* is the cumulative distribution function of a zero-symmetric random variable. Thurstone's model [14] uses an *F* based on the normal distribution, a model that can be derived from the assumption that the polarity of a word w_i is normally distributed around its mean inherent score r_i . Although this is the only model with a sound statistical justification, simpler distribution functions have also been used for convenience, e.g. the logistic distribution (Bradley-Terry model) or the uniform distribution, which is the only one which strictly limits the range of the rating differences $r_i - r_j$ (see Fig. 1). The standard deviation σ of the distribution function is a scale parameter that determines the range of the ratings r_i .

As the probabilities in Eq. (1) only depend on rating differences, the origin r = 0 cannot be determined from the model, but must be defined by an external constraint. Typical choices are the average rating constraint $\sum_i r_i = 0$, or the reference object constraint, i.e. $r_i = 0$ for some *i*. For sentiment lexica, a natural constraint can be obtained by separately classifying words into positive and negative words and choosing the origin in such a way that the scores from the paired comparison model coincide with these classifications.

The ratings r_i and the draw-width t must be estimated from the observed comparisons. During our two steps of building a sentiment lexicon, two different estimation problems occur:

- 1) Estimation of one unknown r of a new word from m comparisons with old words with known ratings q_i, \ldots, q_m .
- 2) Estimation of t and all unknown $r_1 \ldots, r_n$ from round-robin pair comparisons.

Estimators with desirable properties are generally obtained from maximizing the (log) likelihood function, which can only be done numerically in the above cases. Alternatively, approximate analytic formulas for estimating the parameters can be obtained with the "generalized method of moments" as outlined in the following two subsections.

A. Case 1: one unknown rating r

Let us first consider this simpler case. The idea of the generalized method of moments is to set the measured value of an observable equal to its expectation value and solve the resulting equation for the parameters. Following [12], we choose as an observable a combination of the number of wins W of the new word and the number of draws D, which we set equal to its expectation values

$$W = \sum_{i=1}^{m} F(r - q_i - t)$$
(2a)

$$D = \sum_{i=1}^{m} \left(F(r - q_i + t) - F(r - q_i - t) \right)$$
(2b)

For small t, we can make a Taylor expansion of the right hand sides of Eq. (2) around t = 0, and, for the combination W + D/2, the term linear in t vanishes:

$$W + D/2 \approx \sum_{i=1}^{m} F(r - q_i)$$
(3)

With Elo's approximation $\sum_{i=1}^{m} F(r-q_i) \approx m \cdot F(r-\overline{q})$ [11], this can be solved for r in closed form:

$$r \approx \overline{q} + F^{-1} \left(\frac{W + D/2}{m} \right)$$
 with $\overline{q} = \frac{1}{m} \sum_{i=1}^{m} q_i$ (4)

An alternative solution can be obtained by numerically maximizing the log-likelihood function l(r) (t is considered as given):

$$l(r) = \sum_{wins} \log F(r - q_i - t)$$

$$+ \sum_{draws} \log \left(F(r - q_i + t) - F(r - q_i - t) \right)$$

$$+ \sum_{losses} \log F(q_i - r - t)$$
(5)

B. Case 2: all ratings $(r_i)_{i=1}^n$ and t unknown

Again, we obtain an approximate estimator with the generalized method of moments by considering for each word w_i the total score S_i from k-fold round-robin comparisons as an observable

$$S_{i} = \underbrace{W_{i}}_{\text{wins}} + \frac{1}{2} (\underbrace{D_{i}}_{\text{draws}} + \underbrace{k}_{\text{self}})$$
(6)

and setting it equal to its expectation value. With a Taylor approximation around t = 0 and Elo's approximation, we obtain

$$S_i \approx k \sum_{j=1}^{n} F(r_i - r_j) \approx kn F(r_i - \overline{r})$$
(7)

¹This holds exactly for the uniform distribution, but is only a crude approximation for the Thurstone or Bradley-Terry model.

Fig. 2. Graphical user interface for score assignment as seen by the test persons.

where $\overline{r} = \sum_{j} r_{j}/n$ is the average rating of all words. Joint estimates for all ratings can then be obtained by minimizing the sum of the squared deviations

$$SS(r_1,\ldots,r_n) = \sum_{i=1}^n \left(S_i - kn F(r_i - \overline{r})\right)^2 \qquad (8)$$

The minimum of expression (8) can be given in closed form because (8) is exactly zero for (note that \overline{r} can be chosen arbitrarily, as explained in section II):

$$r_i = \overline{r} + F^{-1}(S_i/kn) \quad \text{with} \quad \overline{r} = \frac{1}{n} \sum_{j=1}^n r_j \tag{9}$$

To obtain an approximate estimator for the draw width t, let us consider the total number of draws D_i of each word w_i as an observable and set it equal to its expectation value in a k-fold round robin experiment:

$$D_{i} = k \sum_{j \neq i} \left(F(r_{i} - r_{j} + t) - F(r_{i} - r_{j} - t) \right)$$
(10)

Keeping only the first non-zero term in a Taylor expansion around t = 0 of the sum on the right hand side yields

$$\sum_{j \neq i} \left(F(r_i - r_j + t) - F(r_i - r_j - t) \right) \approx 2t \sum_{j \neq i} F'(r_i - r_j)$$
(11)

Again, we can determine t by minimizing the sum of the squared deviations

$$SS(t) = \sum_{i=1}^{n} \left(D_i - 2kt \sum_{j \neq i}^{n} F'(r_i - r_j) \right)^2$$
(12)

The minimum of expression (12) can be found analytically by solving for the zero of SS'(t), which yields

$$t = \frac{\sum_{i=1}^{n} f_i D_i / 2}{\sum_{i=1}^{n} f_i^2} \quad \text{with} \quad f_i = k \sum_{j \neq i} F'(r_i - r_j) \quad (13)$$

The approximate solution (9) and (13) can then be used as a starting point for maximizing the log-likelihood function

$$l(r_1, \dots, r_n, t) = \sum_{\substack{\text{comparisons}\\ \text{with } w_i > w_j}} \log F(r_i - r_j - t)$$
(14)
+
$$\sum_{\substack{\text{comparisons}\\ \text{with } w_i \approx w_j}} \log \left(F(r_i - r_j + t) - F(r_i - r_j - t) \right)$$

It should be noted that, due to the large number of n + 1 parameters, numerical methods for maximizing (14) might not work reliably. In this case, the approximate solution (9) and (13) should be used.

III. EXPERIMENTAL DESIGN

To select 200 words for building the initial lexicon from round robin pair comparisons, we have started with all 1 498 adjectives from SentiWS [4]. To build an intersection of these words with SenticNet [5], we translated all words into English with both of the German-English dictionaries from *www.dict.cc* and *www.freedict.org*, and removed all words without a match in SenticNet. From the remaining 1 303 words, we selected manually 10 words that appeared strongly positive to us, and 10 strongly negative words. This was to make sure that the polarity range is sufficiently wide in the initial lexicon. The remaining words were ranked by their SentiWS score and selected with equidistant ranks, such that we obtained 200 words, with an equal number of positive and negative words according to SentiWS.

We then let ten different test persons assign polarity scores to these words in two different experiments. The first one consisted of direct assignment of scores on a five degree scale (see Fig. 2(a)), which resulted in ten evaluations for each word. An average score was computed for each word by replacing the ordinal scale with a metric value (-1 = strong negative, -0.5 = weak negative, 0 = neutral, 0.5 = weak positive, 1.0 =strong positive).

The second experiment consisted of twofold round robin paired comparisons, with all $2 \cdot 19\,900$ pairs evenly distributed among the ten test persons, such that each person evaluated $3\,980$ pairs. See Fig. 2(b) for the graphical user interface presented to the test persons. The scores were computed with the method-of-moments solution from section II-B. The standard deviation of the normal distribution was set to $\sigma = 1/\sqrt{3}$, which corresponds to the distribution function in Fig. 1. For a reasonable choice for the origin r = 0, we shifted all scores such that they best fitted to the discrimination between positive and negative words from the direct comparison experiment. To be precise: when r'_i is the score from the direct assignment and r_i the score from the paired comparisons with an arbitrarily set origin, we chose the shift value ρ that minimized the squared error

$$SE(\rho) = \sum_{\text{sign}(\rho+r_i)\neq \text{sign}(r'_i)} (\rho+r_i)^2$$
(15)

Algorithm 1 One-fold addition of new word

Input: word wwith unknown rating words r, $\vec{v} = (v_1, \ldots, v_n)$ sorted by their known ratings q_1, \ldots, q_n **Output:** new rating r1: $i_l \leftarrow 1$ and $i_r \leftarrow n$ 2: $i \leftarrow \lfloor (i_l + i_r)/2 \rfloor$ 3: $m_0 \leftarrow 0$ 4: $\vec{q} \leftarrow ()$ 5: $\vec{u} \leftarrow \vec{v}$ ▷ binary search 6: while $i > i_l$ and $i < i_r$ do 7: $m_0 \leftarrow m_0 + 1$ 8: $\vec{q} \leftarrow \vec{q} \cup q_i$ 9: $s \leftarrow$ score from w versus v_i comparison, where win counts 1 and draw counts 1/2 10: $S \leftarrow S + s$ 11: $\vec{u} \leftarrow \vec{u} \setminus v_i$ 12: if s > 1/2 then 13. $i_l \leftarrow i$ 14: else 15: $i_r \leftarrow i$ 16: end if 17: $i \leftarrow |(i_l + i_r)/2|$ 18: 19: end while 20: $r_0 \leftarrow \text{mean}(\vec{q}) + F^{-1}(S/m_0)$ ▷ first guess 21: $\vec{u} \leftarrow m$ words in \vec{u} with closest ratings to r_0 22: $\vec{q} \leftarrow \vec{q} \cup$ ratings of \vec{v} 23: $S \leftarrow S +$ total score of w against words from \vec{u} 24: $r \leftarrow \text{mean}(\vec{q}) + F^{-1}(S/(m_0 + m))$ ⊳ cf. Eq. (4) 25: **return** *r*

For adding new words, we implemented the method by Silverstein & Farrell, which uses comparison results to sort the new word into a binary sort tree built from the initial words [13]. For n initial words, this only leads to $\log_2(n)$ comparisons, which generally are too few for computing a reliable score. We therefore extended this method by adding comparisons with the m words from the initial set which have the closest rank to the rank obtained from the sort tree process. Algorithm 1 lists the resulting algorithm in detail. This algorithm can be applied sequentially to more than one test person by estimating the resulting rating from all scores obtained from all test persons with Eq. (4). We have evaluated this method with a leave-one-out experiment using the comparisons from our two-fold round-robin comparison experiment.

IV. RESULTS

A. Score values

It turned out that all maximization algorithms provided by the *R*-package *optimx* failed to maximize the log-likelihood function (14). We therefore used the approximate solution given by (9) and (13). To get an idea of the difference between both solutions, we compared them for a well-studied much smaller paired-comparison experiment, the student preference data for the Community of European Management

	212 round-robin				all 303	
	MM	/Elo	M	L	ML	
school	r_i	σ_{JK}	r_i	σ_{JK}	r_i	
London	0.555	0.038	0.632	0.046	0.588	
Paris	0.177	0.045	0.193	0.050	0.156	
Barcelona	-0.047	0.042	-0.064	0.046	-0.078	
St.Gallen	-0.120	0.046	-0.121	0.051	-0.086	
Milano	-0.147	0.041	-0.176	0.045	-0.169	
Stockholm	-0.417	0.039	-0.465	0.044	-0.410	
t	0.162	0.016	0.166	0.016	0.153	

TABLE I

CEMS preference scores from method-of-moments (MM/ELO) AND MAXIMUM-LIKELIHOOD (ML).

Schools (CEMS) [16]. The data is available in the *R* Package *BradleyTerry2*² and was also used as an example in the review by Cattelan [15]. Theoretically, it should include all-pair preference choices between six management schools made by 303 students, but as 91 students missed answering some questions, it actually only includes 212 students performing a full round-robin comparison. This means that we effectively only have a 212-fold round-robin experiment.

We have computed the rating estimators from these 212 students both with the approximate method-of-moments and maximum-likelihood, and estimated the standard error with the jackknife variance σ_{JK}^2 [17] by cyclic omission of one student. All ratings were normalized to zero mean, and *F* was chosen as a standard normal distribution³. The results are listed in Table I together with the maximum-likelihood estimators obtained from all 303 students including those students with missing answers in the last column. The difference between the different estimators is smaller than the estimated standard error in most cases, with the method-of-moments estimator surprisingly even closer on average to the estimator in the last column. We therefore conclude that the approximate method-of-moments estimators works well for estimating ratings from round-robin comparisons.

For the 200 words, we estimated the polarity ratings with the approximate method-of-moments with the three distribution functions of Fig. 1. The draw width t turned out to be 0.128 for the normal distribution, 0.119 for the logistic distribution, and 0.146 for the uniform distribution. Fig. 3 shows a kernel density plot [18] for the resulting score distributions. The valley around zero (neutrality) is due to the fact that the words were drawn from the SentiWS data which only contains positive or negative words. The comparative shapes are as expected from Fig. 1: the steeper the slope of the distribution F(x) at x = 0, the more condensed are the resulting scores.

It is interesting to compare the scores from paired comparisons for words which have obtained the same score from direct assignment on the five grade scale. The examples in table II show that the paired comparisons indeed lead to a different and finer rating scheme than averaging over coarse polarity

²http://cran.r-project.org/package=BradleyTerry2

³The choice $\sigma = 1$ was made for compatibility with the results reported by Cattelan in [15], which are identical to the last column in Table I when normalized to zero mean instead of zero minimum.

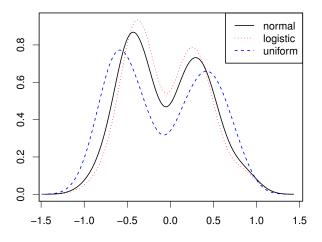


Fig. 3. Kernel density plot of the polarity score distribution in our sentiment lexicon for different cumulative distribution functions F.

adjective	r _{direct}	r _{paired}	σ_{JK}			
paradiesisch (paradisaical)	1.00	0.872	0.074			
wunderbar (wonderful)	1.00	0.816	0.071			
perfekt (perfect)	0.95	1.001	0.086			
traumhaft (dreamlike)	0.95	0.955	0.081			
prima (great)	0.75	0.684	0.063			
zufrieden (contented)	0.75	0.495	0.055			
kinderleicht (childishly simple)	0.50	0.348	0.051			
lebensfähig (viable)	0.50	0.249	0.048			
ausgeweitet (expanded)	0.05	-0.008	0.046			
verbindlich (binding)	0.00	0.091	0.039			
kontrovers (controversial)	-0.05	-0.175	0.047			
unpraktisch (unpractical)	-0.50	-0.279	0.046			
rüde (uncouth)	-0.50	-0.517	0.052			
falsch (wrong)	-0.75	-0.515	0.055			
unbarmherzig (merciless)	-0.75	-0.688	0.055			
erbärmlich (wretched)	-1.00	-0.728	0.055			
tödlich (deadly)	-1.00	-1.028	0.062			

TABLE II

EXAMPLE SCORES FROM AVERAGE DIRECT ASSIGNMENT AND PAIRED COMPARISONS WITH THE NORMAL DISTRIBUTION.

scores from direct assignments, and that they also can lead to a reversed rank order (see, e.g., "traumhaft" and "wunderbar"). We have also estimated the variances of the polarity score estimates as the jackknife variance σ_{JK}^2 via cyclic omission of one word. These can be used to test whether, for $r_i > r_j$, the score difference is significant by computing the *p*-value $1 - \Phi\left(\frac{(r_i - r_j)}{\sqrt{\sigma_i^2 + \sigma_j^2}}\right)$, where Φ is the distribution function of the standard normal distribution. For the words "unpraktisch" and "rüde", e.g., the *p*-value is 0.0003, which is smaller than 5% and the difference is therefore statistically significant. The probability that "unpraktisch" is considered less negative than "rüde" is F(-0.279 - (-0.517) - 0.128) = 0.58.

B. Adding new words

To obtain a lower bound for the error in estimating scores for unknown words, we have first computed the scores for all words with the estimators for one unknown rating r as described in section II-A, where each word was compared with all other words and the scores q_i for other words were considered to be known from the results in the preceding

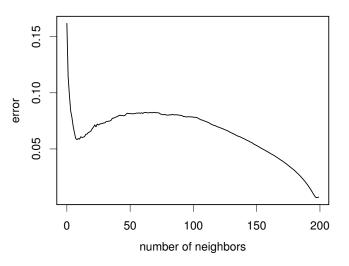


Fig. 4. Mean absolute error (MAE) from leave-one-out as a function of the number of additional comparisons after Silverstein & Farrell's method.

section. The mean absolute error with respect to the known score was much higher for the maximum-likelihood estimator (0.1444) than for method-of-moments estimator (0.008). This does not necessarily mean that the method-of-moments estimator is better, but it may be due to the fact that the "ground truth score" was also computed with the method-of-moments based on a similar observable. We therefore have used the method-of-moments estimator in the subsequent evaluations.

For a reasonable recommendation for the number of incomplete comparisons, we have varied the number m of neighboring scores after sorting in the unknown word with Silverstein & Farrell's method (see section III). The results are shown in Fig. 4. It is interesting to observe that adding comparisons with similar scores first improves the accuracy, but leads to slight deterioration when too many similar words are added. The local minimum in Fig. 4 occurs at m = 8 with a mean absolute error of 0.0582. This effect deserves further investigation. A possible explanation for this behavior could be that we only had two results for each comparison, which are not sufficiently representative for comparisons of words with similar scores. Nevertheless, adding similar words after a first guess based on Silverstein & Farrel's method leads to a smaller error than choosing comparison words at random: in a 100fold Monte-Carlo experiment with choosing $\log_2(n) + m \approx 16$ words at random, we obtained a mean absolute error of 0.0840.

It should be noted that the error of 0.0582 is close to the standard deviations for the scores given in Table II and is about half the draw width. We therefore conclude that incomplete comparisons with only 16 out of 200 words provides a reasonably accurate score estimate, provided the words are selected with our method.

	choice for F				
	normal	logistic	uniform		
direct	$r_p = 0.968$	$r_p = 0.961$	$r_p = 0.979$		
SentiWS	$r_p = 0.709$	$r_p = 0.707$	$r_p = 0.710$		
SenticNet	$r_p = 0.741$	$r_p = 0.732$	$r_p = 0.763$		

TABLE III PEARSON CORRELATION r_p of the parity scores from the paired comparison with that of direct assignment and corpus-based methods.

C. Comparison to corpus-based lexica

The polarity scores computed in our experiments provide nice ground truth data for the evaluation of corpus-based polarity scores. We therefore compared the scores from SentiWS 1.8 and SenticNet 3.0 with the scores computed from test person answers. SenticNet only contains English words, from which we have computed scores for the German words by translating each German word with both of the German-English dictionaries from *www.dict.cc* and *www.freedict.org* and by averaging the corresponding scores.

A natural measure for the closeness between lists of polarity scores is Pearson's correlation coefficient r_p , which has the advantage that it is invariant both under scale and translation of the variables. This is crucial in our case, because score values from paired comparisons allow for arbitrary shift and scale as explained in section II. r_p is highest for a linear relationship and smaller for other monotonous relationships. As can be seen in Table III, this means that its value depends on the shape of the model distribution function F. Whatever function is used, the correlation between the scores from direct assignment and paired comparison is very strong. This was to be expected, because both values stem from test persons.

The correlation with the paired scores is higher for Sentic-Net than for SentiWS. According to the significance tests in the R package cocor [19], this difference is not significant, however, on a 5% significance level. From the density plot in Fig. 5 and the scatter plots in Fig. 6, it is nevertheless easily understandable that SenticNet is slightly stronger correlated to the true polarity scores than SentiWS. As can be seen in Fig. 6, SentiWS has many identical scores with values 0.0040 and -0.0048. This peculiar distribution of the SentiWS scores was also observed in the original paper presenting the SentiWS data set by Remus et al. (see Fig. 1 in [4]). The identical scores show up in Fig. 5 as a peak around neutrality, which corresponds to a valley (sic!) in the score distribution from paired comparisons. They do not have such a strong effect on the correlation coefficient r_p , because the identical values also lead to a lower standard deviation (0.32 for SentiWS versus 0.44 for SenticNet), which is part of the denominator of r_p . Based on these observations, we consider the polarity scores from SenticNet (via automatic translation) more reliable than the scores from SentiWS.

V. CONCLUSIONS

The new sentiment lexicon from paired comparison is a useful resource that can be used for different aims. It can

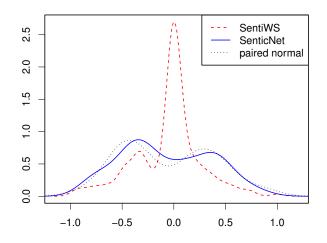


Fig. 5. Kernel density plots of the polarity score distributions.

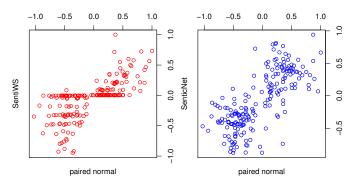


Fig. 6. Scatter plots comparing corpus-based scores with scores from paired comparisons.

be used, e.g., as ground truth data for testing and comparing automatic corpus-based methods for building sentiment lexica, as we did in section IV-C. Or it can be used as a starting point for building specialized lexica for polarity studies. The method for adding new words makes the method of paired comparison applicable to studies with an arbitrary vocabulary because it yields accurate polarity scores even for rare words.

Although the new sentiment lexicon is ready to be used, there are still two points in the method of paired comparison that require further research. One is the development of a robust numerical maximum-likelihood estimator that also works in the presence of draws and in the case of a large number of parameters. The other one is an explanation of the local minimum in Fig. 4: is this a general effect of our method for choosing words for comparison, or is it a peculiarity in our data?

The ratings presented in Table II have been calculated with the Thurstone model, which is the only model with a sound statistical justification. It might nevertheless be attractive in practice to use the uniform distribution, because it has a stronger correlation both with the scores from direct assignment and with the scores from SentiWS and SenticNet. Moreover it restricts the polarity scores to a limited range even in the presence of strongly positive or strongly negative words.

ACKNOWLEDGMENTS

We are grateful to Jens Wilberg for implementing the translation based score computation for German words with SenticNet. Moreover, we thank the anonymous reviewers for their valuable comments.

REFERENCES

- S. Kiritchenko, X. Zhu, and S. M. Mohammad, "Sentiment analysis of short informal texts," *Journal of Artificial Intelligence Research*, pp. 723–762, 2014.
- [2] K. Morik, A. Jung, J. Weckwerth, S. Rötner, S. Hess, S. Buschjäger, and L. Pfahler, "Untersuchungen zur Analyse von deutschsprachigen Textdaten," Technische Universität Dortmund, Tech. Rep. 02/2015, 2015.
- [3] K. W. Church and P. Hanks, "Word association norms, mutual information, and lexicography," *Computational linguistics*, vol. 16, no. 1, pp. 22–29, 1990.
- [4] R. Remus, U. Quasthoff, and G. Heyer, "SentiWS a publicly available German-language resource for sentiment analysis," in *Conference on Language Resources and Evaluation (LREC)*, 2010, pp. 1168–1171.
- [5] E. Cambria, D. Olsher, and D. Rajagopal, "SenticNet 3: A common and common-sense knowledge base for cognition-driven sentiment analysis," in AAAI conference on artificial intelligence, 2014, pp. 1515–1521.
- [6] E. Cambria and A. Hussain, Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis. Cham, Switzerland: Springer, 2015.
- [7] S. Poria, A. Gelbukh, D. Das, and S. Bandyopadhyay, "Fuzzy clustering for semi-supervised learning–case study: Construction of an emotion lexicon," in *Mexican International Conference on Artificial Intelligence*, 2012, pp. 73–86.
- [8] T. Wilson, J. Wiebe, and P. Hoffmann, "Recognizing contextual polarity in phrase-level sentiment analysis," in *Conference on human language* technology and empirical methods in natural language processing (HTL/EMNLP), 2005, pp. 347–354.
- [9] M. Wiegand, C. Bocionek, A. Conrad, J. Dembowski, J. Giesen, G. Linn, and L. Schmeling, "Saarland University's participation in the German sentiment analysis shared task (GESTALT)," in *Workshop Proceedings* of the 12th KONVENS, 2014, pp. 174–184.
- [10] R. K. Mantiuk, A. Tomaszewska, and R. Mantiuk, "Comparison of four subjective methods for image quality assessment," *Computer Graphics Forum*, vol. 31, no. 8, pp. 2478–2491, 2012.
- [11] A. E. Elo, *The Rating of Chess Players, Past and Present.* New York: Arco, 1978.
- [12] W. H. Batchelder and N. J. Bershad, "The statistical analysis of a Thurstonian model for rating chess players," *Journal of Mathematical Psychology*, vol. 19, no. 1, pp. 39–60, 1979.
- [13] D. A. Silverstein and J. E. Farrell, "Efficient method for paired comparison," *Journal of Electronic Imaging*, vol. 10, no. 2, pp. 394–398, 2001.
- [14] L. L. Thurstone, "A law of comparative judgment." Psychological Review, vol. 34, no. 4, pp. 368–389, 1927.
- [15] M. Cattelan, "Models for paired comparison data: A review with emphasis on dependent data," *Statistical Science*, vol. 27, no. 3, pp. 412–433, 2012.
- [16] R. Dittrich, R. Hatzinger, and W. Katzenbeisser, "Modelling the effect of subject-specific covariates in paired comparison studies with an application to university rankings," *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, vol. 47, no. 4, pp. 511–525, 1998.
- [17] B. Efron and C. Stein, "The jackknife estimate of variance," *The Annals of Statistics*, vol. 9, no. 3, pp. 586–596, 1981.
- [18] S. Sheather and M. Jones, "A reliable data-based bandwidth selection method for kernel density estimation," *Journal of the Royal Society series B*, vol. 53, pp. 683–690, 1991.
- [19] B. Diedenhofen and J. Musch, "cocor: A comprehensive solution for the statistical comparison of correlations," *PLoS ONE*, vol. 10, no. 4, p. e0121945, 2015.