
Scalable and Real-time Sentiment Analysis of
Twitter Data

Maria Karanasou, Anneta Ampla, Christos Doulkeridis and Maria Halkidi
Department of Digital Systems, School of Information and Communication Technologies

University of Piraeus, Piraeus, Greece
Email:karanasou@gmail.com, anneta.ampla@hotmail.com, {cdoulk,mhalk}@unipi.gr

Abstract—In this paper, we present a system for scalable and
real-time sentiment analysis of Twitter data. The proposed system
relies on feature extraction from tweets, using both morphological
features and semantic information. For the sentiment analysis
task, we adopt a supervised learning approach, where we train
various classifiers based on the extracted features. Finally, we
present the design and implementation of a real-time system
architecture in Storm, which contains the feature extraction and
classification tasks, and scales well with respect to input data size
and data arrival rate. By means of an experimental evaluation,
we demonstrate the merits of the proposed system, both in terms
of classification accuracy as well as scalability and performance.

I. INTRODUCTION

Online social networking platforms (such as Twitter, Tum-
blr, Weibo) where users are enabled to send short messages
and express opinions on specific topics and their sentiments
on them have increased rapidly the last few years. The amount
of posted information keeps increasing to unimaginable levels.
Thus the requirement for data analysis techniques that process
posts online and assist with extracting interesting patterns of
knowledge from them is stronger than ever.

Sentiment analysis and opinion mining have attracted the
attention of the research community lately, due to numerous
applications that are related to automated processing and anal-
ysis of text corpora. Traditional sentiment analysis approaches
have been designed for static and well-controlled scenarios
[11]. In microblogging environment the real-time interaction
is a key feature and thus the ability to automatically analyze
information and predict user sentiments as discussions develop
is a challenging issue. The challenges that data analysis
has to tackle in case of microblogging data is the use of
informal, abbreviated, evolving language as well as the lack
of information due to the short messages that are exchanged.

In this paper, we address the above challenges designing a
scalable real-time sentiment analysis system. We proposed a
methodology for extracting useful features from posts in order
to represent them in sentiment analysis process. Moreover we
developed a scalable system that processes tweets in real-
time and uses supervised learning techniques to predict their
sentiments. Our sentiment analysis models are adapted to the
evolution of microblogging data exploiting the feedback that
experts provide.

Summarizing, the main contributions of this paper are as
follows:

• We develop a framework for sentiment analysis of Twitter
data based on supervised learning techniques. The main
components of this framework consist of: (i) a preprocess-
ing module that assists with refining the data collection
and selecting the features that properly represent the
Twitter data (ii) a supervised learning module that aims
to identify the sentiment polarity in Twitter data and
properly classify them.

• We study the use of ensemble learning methods in the
context of sentiment analysis, and we present the use of
a feedback mechanism in the sentiment analysis process
that is adaptable to dynamic contents.

• We design a real-time system architecture based on Storm
to deal with evolution and volume of Twitter data.

• We evaluate our approach using various datasets. The
collection of tweets is selected so that it contains a
variety of words, expressions, emotional signals as well
as indicative examples of sarcastic, ironic, metaphoric
language. Also we conducted experiments considering the
combination of multiple features (incl. prior polarity, text
similarity, pattern detection).

The rest of this paper is organized as follows: Section II
provides an overview of related work. Section III describes
an overview of our approach, including the feature extraction
and classification. In Section IV, we present the system
implementation for real-time sentiment analysis using Storm.
In Section V, we present the experimental study, and in
Section VI we conclude the paper.

II. RELATED WORK

In this section we briefly discuss approaches related to
sentiment analysis in microblogging data. For a brief survey
we refer to [9], while we point to [5], [6] for a recent overview
of the topic of Big Social Data Analysis.
Scalable Sentiment Analysis. Scalable systems for sentiment
analysis can be categorized in real-time systems [11], [24]
and systems for batch processing [15]. In [24], a system is
presented for real-time sentiment analysis on Twitter streaming
data towards presidential candidates (US 2012). Results are
delivered continuously and instantly, and feedback based on
human annotation is proposed, however the online feedback
loop and update of the trained model is left as future work.
Real-time sentiment analysis is also targeted in [11] by means
of transfer learning, where several challenges are identified,



Fig. 1. Overview of our approach.

including highly dynamic textual content, changes in vocabu-
lary, subjective meaning, and the lack of labeled data. In the
case of batch processing, a system for sentiment analysis that
is built on Hadoop/HBase is presented in [15], and consists of
a lexicon builder (a word graph) and sentiment classifier. The
Adaptive Logistics Regression is used from Mahout lib, and
runs as a MapReduce job where each mapper is a classifier
instance.
Sentiment Analysis for Twitter. Several works target sen-
timent analysis without focusing explicitly on the scalability
aspect. Recently, an ensemble classification approach is in-
vestigated for airline services based on Twitter [23]. In [3],
an approach is presented for sentiment analysis on global
entities, such as “Michael Jackson”. The aim of this work
is to use the Twitter corpus to ascertain the opinion about
entities that matter and enable consumption of these opinions
in a user-friendly way. In [20], several surveys on consumer
confidence and political opinion over the 2008 to 2009 period
are analyzed, and they are found to be correlated to senti-
ment word frequencies in contemporaneous Twitter messages.
In [4], tweets are analyzed in an attempt to investigate the
correlation of the collective mood state to the value of stocks.
In our previous work [14], we proposed a method for sentiment
analysis of figurative language on Twitter, where the challenge
is to identify sarcasm and irony in tweets. A probabilistic
graphical model is proposed in [13] for mining topics and
user communities, which associates topic-specific sentiments
and behaviors with each user community. In [22], an approach
for propagation-based sentiment analysis is proposed, which
exploits both labeled and unlabeled data for learning, aiming
at providing an adaptive solution for dynamically changing
text corpora (tweets) that requires less manual effort. Also,
linguistic rules have been used together with concept-level
knowledge bases to improve sentiment analysis [7].
Sentiment Analysis in Generic Text Corpora. There exists
a bunch of papers that study sentiment analysis in various
text corpora, other than tweets (cf. [18]). In [16], the inter-
play between sentiment and other factors is studied, such
as gender, age, education, focusing on data from Yahoo!
Answers. A system that assigns scores indicating positive or
negative opinion to each distinct entity in the text corpus is

presented in [10], focusing on news and blogs. The approach
consists of two phases: a sentiment identification phase, which
associates expressed opinions with each relevant entity, and a
sentiment aggregation and scoring phase, which scores each
entity relative to others in the same class. Sentiment analysis
on product reviews from Amazon is studied in [12].

III. OUR SENTIMENT ANALYSIS APPROACH

In this section we present our sentiment analysis approach
which is based on supervised learning methods. It is a two-
phase approach consisting of an offline and an online process
as Fig. 1 depicts.

In the offline process, a labeled dataset of tweets is prepro-
cessed in order to extract useful features, and then it is used
to train a classifier. After training, the classification model is
stored on secondary storage, in order to be loaded and used
in the online phase.

In the online process, tweets from the Twitter stream are
received, preprocessed and features are extracted. Then, each
tweet (more accurately its representation using features) is
given as input to the classifier, which has already loaded the
classification model, and is able to predict the sentiment of the
tweet. In addition, various statistics are computed, updated and
stored to persistent storage.

In the online process, our system aims to deal with evolving
data. The evolution of data is related to the rate with which
tweets arrive as well as the changes in the textual content (e.g.
changes in vocabulary, meaning of words etc). Our classifica-
tion model adapts to the evolution of tweets exploiting the
user (or domain expert) feedback. Thus we considered that
the classifier is periodically evaluated based on feedback it
receives and if the accuracy of classifier seems to decrease
significantly, the classifier is retrained with an updated set
of data (i.e., the offline process is re-applied). Due to the
separation of these processes, we are able to use more than one
model to make predictions on streaming data, thus, evaluate
more than one model with the use of feedback.

A. Offline Phase: Feature Extraction

The goal of this phase is to build the model that is
used to predict the sentiment of tweets. At the heart of the



Feature Description
HT (t) Hashtag categorization
HASHTAG-LEXICON-SUM Same preprocessing for hashtags

average of hashtags scores (from NRCHashtag lexicon [19])
POS-SMILEY Presence of common positive emoticons
NEG-SMILEY Presence of common negative emoticons
OH-SO Presence of patterns “Oh so*”,
DONT-YOU “Don’t you*”,and “As * as *” that
AS-*-AS-* may indicate ironic or sarcastic text
CAPITAL Presence of capitalized words
MULTIPLE-CHARS-IN-ROW Presence of multiple characters
LINK Presence of urls
NEGATION Presence of negating words
REFERENCE Presence of user mentions, e.g. @user
QUESTIONMARK Presence of ”?”
EXCLAMATION Presence of ”!”
FULLSTOP Presence of more than 2 consecutive dots
LAUGH Presence of common laughter

indications, such as haha, lol, etc
PUNCT The percentage of punctuation
RT Presence of retweet
sim(t) Text semantic similarity of tweet
POS-tags Words to part of speech (POS) correspondence
POS-POSITION-i Match between word position and part of speech
POLARITY Polarity of a tweet t based on swnScore(t)
POLARITY-Words Polarity of words wi in a tweet as defined by swnScore(wi)

IS-METAPHOR True/False as described in the preprocessing section
SYN-SET-LENGTH For each word, True if current word’s length is greater than the

length of any of the word’s synonyms. False otherwise
TABLE I

OVERVIEW OF FEATURE EXTRACTION

proposed system, two main modules are employed: (a) the
preprocessing, and (b) the classification module.

1) Preprocessing - Feature Extraction.: Data preprocessing
is an important step in our sentiment analysis approach.
It includes cleaning, transformation, feature extraction and
selection. The feature extraction task is challenging due to
various reasons, including the brevity of tweet messages, the
noisy contents, and the fact that the language is informal,
abbreviated and evolving. The result of data preprocessing is
the final training set.

Given a set of posts (tweets) T , the pre-processing module
aims to extract from T a set of features that properly represent
posts and provide useful information in the sentiment analysis
process. Considering that F = {f1, . . . , fn} is the set of
extracted features, each post t is represented as a vector
(feature dictionary): fd(t) : [f1(t), . . . , fn(t)], where fi(t)
denotes the value of the feature fi for post t.

Feature extraction regarding morphological features takes
place before the cleaning of the text in order to avoid loss
of information related to punctuation, urls and emoticons.
This process checks if a tweet contains question marks or
exclamation marks, capitalized words, urls, negations, laughter
indications, retweet, positive/negative emoticons and hashtags.
Table I summarizes the features extracted from a post to be
used in our sentiment analysis approach.
Emoticons and hashtags classification. The emoticons and

hashtags are classified based on the sentiment that they may
convey. Specifically we manually classify the top-20 emoti-
cons and some variations of them1 as positive or negative.
The hashtags identified in a post are classified as positive,
negative or neutral based on SentiWordNet score (swnScore).
SentiWordNet [2] is a lexical resource for opinion mining that
assigns to each synset of WordNet three sentiment scores: pos-
itivity, negativity, objectivity. Based on this, for each hashtag
ht that is extracted from a post t we split it and spellcheck it (if
necessary) and retrieve its swnScore(ht). Then, the feature,
HT (t) that indicates the hashtag classification of a post t is
defined based on the number of positive, negative, and neutral
hashtags present in the post t. That is:

HT (t) =

 HTpos(t) c(htPos) > c(htNeg) > 0
HTneu(t) c(htPos) = c(htNeg) = 0
HTneg(t) c(htNeg) >= c(htPos) > 0

where c(htPos), c(htNeg) denote the count of positive and
negative hashtags in a tweet t respectively. The last hashtag is
weighted more when the total hashtag polarity is calculated.
Pattern detection. Moreover, in the feature selection process
we identify the presence of various patterns, such as: “Oh
so*”, “Don’t you*”, and “As * as *”. Such patterns have
been identified in previous work to indicate sarcastic or ironic

1http://datagenetics.com/blog/october52012



language, metaphors, and similes. All the above patterns, when
present in a tweet, may affect the sentiment, and as such they
are used as features.
Cleaning. The cleaning proceeds with punctuation, stop-
words, urls, common emoticons and hashtags, references re-
moval. Additionally, multiple consecutive letters in a word are
reduced to two. Finally, spell-checking is performed to words
that have been identified as misspelled in order to deduce the
correct word. Then, we extract various features such as the
aforementioned ones, which are summarized in Table I.
Semantic text similarity. After cleaning, the process continues
with part-of-speech (POS) tagging that is performed with the
use of a custom model [8]. Given a specific POS (e.g., VB),
we denote as ai a word in this category. We compute the
similarity sim(ai, aj) for each pair of words (ai, aj) of a
tweet in a specific category. However a word ai may have
multiple synonyms. Let SY N(ai) denote the set {aki }Nk=1

of N synonyms of ai including ai itself. Then we take
into account the synonyms of words in a tweet and we
define the similarity of each pair of words in this tweet as
the maximum similarity among all possible pairs of their
synonyms. That is, sim(ai, aj) = max{sim(aki , a

m
j )}, where

aki ∈ SY N(ai), a
m
j ∈ SY N(aj). Hence, for a given category

C that has n words {a1, . . . , an} in a tweet t, we compute
the following vector2:
simC(t) = [sim(a1, a2), . . . , sim(an−1, an)]

Capitalizing on this, we compute the text semantic similarity
sim(t) of a tweet t as:

sim(t) =
simPOS(t)

count(POS)

where simPOS(t) =
∑

simV B(t) +
∑

simNN (t) +∑
simADJ(t) +

∑
simRB(t) and count(POS) =

count(V B) + count(NN) + count(ADJ) + count(RB).
Words that belong to the same part of speech are used to

define the feature regarding semantic text similarity. Different
similarity measures (Resnik’s, Lin’s, and Wu and Palmer’s) are
used [21], provided by nltk 3. We employ Resnik’s measure
in our experiments.
Prior polarity. Moreover, the SentiWordNet score for each
word in a tweet is calculated, ignoring words that have fewer
than two letters. If the score of a word cannot be determined,
then we calculate the SentiWordNet score of the stemmed
word. If no score can be retrieved, then neutral is assumed.
Given that the word wi occurs n times in the SentiWordNet
corpus, the total score of wi is given by:

swnScore(wi) =

∑n
i=1(1/ranki) ∗ scorei∑n

i=1 1/ranki

where scorei = 1+PosScorei−NegScorei, and PosScorei
and NegScorei is the positive and negative score respectively
of wi in SentiWordNet. Also, ranki is given by SentiWordNet

2We consider the following categories: verbs (VB), nouns (NN), adjectives
(ADJ), and adverbs (RB).

3The Natural Language Toolkit http://www.nltk.org/.

and corresponds to the weight of the score of a word, when
this word belongs to a set of synsets. The index i of each word
was used in an attempt to correlate each word’s position with
the calculated sentiment. Moreover, the total score of a tweet
t is calculated as the average of SentiWordNet scores of the
words in t, i.e., swnScore(t) =

∑
∀wi∈t swnScore(wi)∑

∀wi∈t 1
.

Based on the values of swnScore the tweets are classified
as positive, somewhat positive (sPositive), negative, somewhat
negative (sNegative), or neutral as follows:

polarity(t) =



positive swnScore(t) ≥ 1.2

negative , swnScore(t) ≤ 0.2

neutral , 0.95 ≤ swnScore(t) ≤ 1.05

sNegative , 0.2 < swnScore(t) < 0.95

sPositive , 1.05 < swnScore(t) < 1.2
(1)

Similarly, the words of each tweet are categorized based on
the values of their swnScore(wi) and eq. 1.
Detecting metaphors. Another feature that we extract from
tweets is if a tweet can be considered as metaphor. The
classification of tweet as metaphoric or not is based on the use
of a classifier that we have properly trained. Specifically we
consider a Linear SVM classifier that is trained with 12,000
tweets (collected from MetaphorMagnet, MetaphorMinute,
and Twitter Sentiment Classification using Distant Supervi-
sion 4). The trained classifier achieved 90% accuracy in the
aforementioned dataset.

B. Offline Phase: Building the Classifier

The preprocessing step is applied to a set of tweets T and
the result is the vector representation of tweets as described in
section III-A1 . Let fd(T ) be the set of vectors representing
the tweets in T . The feature vectors of tweets fd(t) are
processed by a vectorizer 5 to produce a vector array which
is passed to a Tfidf transformer 6.

Then we proceed with building the classification model. Our
system has been designed to be independent of the classifier. In
our study we have experimented with different learning algo-
rithms (Linear SVM, Naive Bayes, Decision Tree, Stochastic
gradient descent) while we also studied the use of ensemble
learning approaches. Our experiments (see Section V) show
that the SVM classifier seems to outperform the other consid-
ered classifiers. In ensemble learning, we generate the model
for predicting tweet sentiments by combining the classification
models built by different algorithms (Linear SVM, Decision
Trees, and Stochastic gradient descent (SGD)). The MaxVote
method (also known as Majority vote [17]) has been used for
combining the predictions of classifiers.

4http://help.sentiment140.com/for-students
5http://scikitlearn.org/stable/modules/generated/sklearn.feature extraction.

DictVectorizer.html
6http://scikitlearn.org/stable/modules/generated/sklearn.feature extraction.

text.TfidfTransformer.html



Fig. 2. Topology in Storm.

IV. REAL-TIME SENTIMENT ANALYSIS

In order to deliver a scalable and real-time solution for
sentiment analysis, we implement our techniques in Storm [1].
Storm is a framework that targets real-time processing and
analysis of data streams, with salient features such as scala-
bility, parallelism and fault-tolerance.

Figure 2 shows the Storm-based topology of our system.
There exists a node (called Spout) that acts as the source of
Twitter data stream. Each process of our system is modeled
as a node (called Bolt) of a Topology graph. Specifically
in our system we have the following types of bolts: the
preprocessing bolt, the post-processing bolt, the classification
bolt, the NoSQL bolt and the statistics bolt. We have also to
note that in our topology we have adopted the shuffle grouping
partitioning approach, that is we consider random distribution
of tuples across the tasks of bolts.

Each tweet from the input stream is preprocessed (includes
cleaning and feature extraction), classified into one of the
available classes, and stored into a NoSQL database for
persistence. Since each tweet is independent, this process is
highly scalable, meaning that for example, the number of
preprocessing bolts can increase or decrease to accommodate
the volume and speed of the stream as it is needed, without
any issue other than hardware support.

In more detail, we collect from the Spout only English
tweets and emit for each tweet a JSON string. In the pre-
processing bolt, we extract the morphological features, we
clean the Tweet’s text, and extract other features. In the
post-processing bolt, we select the features that will be
used by the classifier, while we also perform grouping of
SentiWordNet values. In the classification bolt, the classifier
loads the pre-trained model, and for each incoming tweet
its feature representation is passed from the model, and a
prediction given the current model is made. The NoSQL bolt
receives the classification results and stores them on disk for
evaluation purposes. Finally, the statistics bolt accesses the
classification results and computes various statistics that can
be used to evaluate the quality of the predicted result. In our
implementation, we use Shuffle grouping to distribute tuples
to tasks for all bolts (random partitioning), except from the
statistics bolt where Global grouping is used.

Furthermore, we employ a feedback mechanism. A small
percentage of the tweets that go through the Storm topology
are hand-annotated in order to evaluate the classification
process. These tweets are then used to re-train the classifier
and perform tests in order to conclude whether the use of
feedback brings improvement. Thus, the re-trained model is
loaded in the classification bolt and used in the topology.

V. EXPERIMENTAL EVALUATION

In our implementation, we used Python to develop the sen-
timent analysis part (preprocessing, classification). The part of
topology and components (spout/bolts) has been implemented
in Java. Python scripts are called and run from Java bolts by
implementing the Storm’s multilang protocol.
Platform. We performed experiments on a cloud platform,
provided by Okeanos7, an IAAS service for the Greek Re-
search and Academic Community. Due to limited availability
of resources, we configured six virtual machines (VMs) with
Ubuntu 14.04.2 LTS and installed Apache Storm v0.9.4: one
VM was used to set up a single-node zookeeper, one is used as
the master node and the remaining four VMs are used to host
the topology spout and bolts with the following configuration:
(a) spout and preprocessing, (b) post-processing, (c) classifi-
cation, (d) NoSQL and statistics, respectively. Each VM has
2-4 CPUs, is equipped with 4-8GB RAM, and has disk size of
10-20GB. For instance, the configuration of the master node,
which hosts Storms Nimbus deamon and Storm UI, is 4 CPUs,
6GB RAM and 10GB disk size. With respect to the NoSQL
store, we used MongoDB v3.0.3 in our implementation.
Datasets. For our experimental study we have used both
labeled datasets that are widely used in sentiment analy-
sis literature and manually annotated ones. Specifically we
experimented with SemEval 2015 Task 11, SemEval 2013
Task 2, emoticons-harvested (1.6M tweets8) and two manually
annotated datasets of tweets: ManualTest that contains 480
tweets from 1.6M and 1,000 from the dataset used in [15] and
ManualNeutral provided by [15]. Table II shows the details of
the datasets. We have considered three-class labels (positive
(1), negative (-1), neutral(0)) for tweets in all datasets. The

7https://okeanos.grnet.gr/home/
8http://cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.

pdf



Dataset Total Positive Negative Neutral No emoticons Positive & negative
emoticons

Task11 12,529 1,340 10,326 863 11,109 21
Task2b 9,059 3,349 1,351 4,359 6,359 170
“Emoticon-harvested” 60,000 30,000 30,000 0 0 0
ManualTest 1,480 758 441 281 1,202 13
ManualNeutral 26,336 0 0 26,336 23,810 16
Total 109,404 35,447 42,118 31,839 42,480 220

TABLE II
OVERVIEW OF DATASETS.

Dataset 25K 50K 70K 90K 110K
Task11 12,529 12,529 12,529 12,529 12,529
Task2b 9,059 9,059 9,059 9,059 9,059
“Emoticon-harvested” 0 20,000 40,000 60,000 60,000
ManualTest 1,480 1,480 1,480 1,480 1,480
ManualNeutral 1,000 10,000 10,000 10,000 26,336
Total 24,068 53,068 73,068 93,068 109,404

TABLE III
OVERVIEW OF DATASETS OF VARYING SIZE.

datasets were split to training and testing sets (80-20 or 60-40).
We note that the percentage of positive, negative and neutral
is selected to be the same in both train and test.

Also, we constructed datasets of varying size that have
the settings presented in Table III to conduct experiments
with different volumes of data. In case of the 50K datasets
we use the whole Task11, Task2b, ManualTest, a subset of
10,000 tweets from ManualNeutral and 20,000 tweets from
“Emoticon-harvested” tweets (10,000 positive and 10,000
negative). For the 70K and 90K datasets, we increase the
number of considered tweets by 20,000 (half positive and
half negative) only in the “Emoticon-harvested” dataset. The
110K datasets contain all the tweets of the Task11, Task2b,
Manualtest and ManualNeutral datasets. In case of “Emoticon-
harvested”, we keep 60,000 tweets in order to have a relatively
balanced dataset in terms of polarity.
Parameters. We study the effect of (a) different dataset
synthesis, (b) varying the dataset size, (c) varying the different
features used, and (d) testing different classifiers.
Metrics. We evaluate the classification process using:

• Accuracy that is defined as the proportion
of correctly classified tweets among the
total number of tweets processed (N ), i.e.
accuracy =

num of correctly classified tweets
number of tweets

• The mean square error (MSE) of the classifier which
is defined as MSE =

∑N
i=1(Xi−X̂i)

2

N , where N is the
number of tweets, X̂i is the predicted label of the i-th
tweet and Xi is the actual classification label of i − th
tweet. We note that the MSE of a classifier is calculated
considering the value of tweet polarity instead of its label
(e.g. if a tweet is classified as positive we consider the
value of its polarity that is 1).

• The cosine similarity between predicted labels of tweets
X̂ and actual classification labels X , that is given by
cos(X, X̂) =

∑N
i=1 Xi·X̂i√∑N

i=1 X2
i ·
√∑N

i=1 X̂2
i

Algorithms. We also used Linear SVM, Naive Bayes trained

with all features, and the MaxVote technique (also known as
Majority vote [17]) for the ensemble classifier that combines
the following three classifiers: Linear SVM, Decision Trees,
and SGD. In all cases, we performed 10-fold cross validation
to reduce the effect of variance.

A. Qualitative Results

Results with different classifiers. Figs. 3(a) and 3(b) present
the accuracy of different classifiers applied to Task11 and
Task2b datasets, respectively. The results show that Lin-
earSVM and MaxVote exhibit the best performance with
respect to all metrics (accuracy, cosine, and MSE) consistently.
Similar trends we have observed when we experimented with
all the considered datasets.
Effect of varying dataset size. The main purpose of this
series of experiments was to see how the dataset volume
affects the classification results. Fig. 4(a) shows the results
obtained when we considered the LinearSVM classifier, all
features, and the size of datasets varies from 25K to 110K
tweets. As a general trend, all metrics are improved as the size
of datasets increases. Table IV depicts how the classification
accuracy of SVM classifier changes with respect to the dataset
size. In our study we increase the volume of our data sets
by adding more data samples from the ”Emoticon-harvested”
dataset. We can observer that the size of the training data set
slightly affects the classification results of all the considered
datasets except for Emoticons harvested. This happens because
the additional samples provide new knowledge only for the
”Emoticon-harvested” data. It is obvious then that the quality
depends not only from the number of training samples but also
from the quality of them.
Effect of different features. In addition to data volume, we
conducted experiments with different combinations of features.
Specifically we experimented with and without the use of
emoticons as features. Other studies8 on the “emoticons-
harvested” dataset have shown that the use of emoticons
decreases the classification performance. In our case, as shown



 0

 0.2

 0.4

 0.6

 0.8

 1

accuracy cosine MSE

Metric

N.Bayes

0.831
0.760

0.460

Linear SVM

0.851
0.800

0.382

MaxVote

0.851
0.802

0.380

(a) All features for Task11.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

accuracy cosine MSE

Metric

MaxVote

0.661

0.520
0.457

N.Bayes

0.514

0.281

0.493

Linear SVM

0.674

0.529

0.452

N.Bayes (BoW)

0.637

0.434
0.464

(b) All features for Task2b.

Fig. 3. All features for Task11 and Task2b.

Dataset 50K 70K 90K 110K
Task11 0.844 0.832 0.831 0.834
Task2b 0.641 0.625 0.617 0.621
“Emoticon-harvested” 0.988 0.993 0.995 0.993
ManualTest 0.588 0.569 0.560 0.552
ManualNeutral 0.987 0.986 0.986 0.989

TABLE IV
ACCURACY OF INDIVIDUAL DATASETS AS SIZE INCREASES.

 0

 0.2

 0.4

 0.6

 0.8

 1

accuracy cosine MSE

Metric

50K

0.884
0.842

0.221

70K

0.915 0.893

0.170

90K

0.930 0.918

0.136

110K

0.933 0.907

0.133

(a) All features.

 0

 0.2

 0.4

 0.6

 0.8

 1

accuracy cosine MSE

Metric

50K

0.784

0.583 0.590

70K

0.779 0.794

0.569

90K

0.783 0.794

0.579

110K

0.804

0.562
0.622

(b) No emoticons.

Fig. 4. Linear SVM with varying dataset size.

in Fig. 4(b), the accuracy decreases when the emoticons are
left out, even though there is a significant amount of tweets
(e.g 40% of 110K tweets) that contain neither positive nor
negative emoticons (from the ones we can identify).
Effect of feedback. We observed that in most cases accuracy
increases with the volume of the dataset. However, this does
not guarantee that the classification model will be accurate
when used to make predictions on streaming data. Therefore,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

110K 110K(NoEmot) 110K(NoLinks) 25K

Evaluation on random 1K tweets from stream

0.363 0.371 0.355

0.625

Fig. 5. Evaluation of feedback on the Twitter stream.

we conducted a feedback experiment. A thousand random
tweets gathered from the online process were manually cor-
rected and embodied in the dataset that was used to train and
test the classifier. Basic tests are re-run with the new dataset.

Based on feedback results (Table V), accuracy increases
with feedback when “emoticon-harvested” tweets are not a
major part in the dataset. This happens because the process
of categorizing positive/ negative tweets based on emoticons
only is more coarse grained than using manual evaluation.

In our tests we concurrently used four classifier models that
would be interesting to evaluate with the use of feedback on
streaming data. After observing an amount of the predictions,
it seems that 110K model does not perform well, because
it classifies the majority of tweets as negative. However, the
majority of the tweets classified as neutral and positive by this
model is correct. The manual annotation results of a random
sample of 1,000 tweets is presented in Fig. 5. We observe that
the 25K model has the best performance in this data sample.
Discussion. Our experimental study shows that SVM gave the
most accurate classification results and thus it is also used in
the on-line process experiments.

Parallelism Rate of tweets Rate of tweets
hint generated by processed by

Twitter our system
1 1,008 tweets/min 673 tweets/min
2 1,535 tweets/min 1,535 tweets/min
3 1,475 tweets/min 1,475 tweets/min
4 1,573 tweets/min 1,573 tweets/min

TABLE VI
PERCENTAGE OF PROCESSED TWEETS DEPENDING ON PARALLELISM.



Dataset Settings 25K + 25K + 25K + 50K 70K 90K 110K
No Emoticon 2K Emoticon 10K Emoticon

harvested harvested harvested
No feedback 0.762 0.776 0.839 0.883 0.913 0.929 0.936
5K feedback 0.769 0.778 0.833 0.872 0.904 0.922 0.928

TABLE V
ACCURACY WITH RESPECT TO FEEDBACK

B. Performance Results
We conducted an experiment that aims to assess the effect of

parallelism to the scalability of our system. It should be noted
that the rate of tweet generation varies based on time, since
more tweets per second are created at different times of the
day. As we restrict the tweets that are processed by our system
to only those using English language, we observed tweet
generation rates in the range of 1,000-2,000 tweets/minute9,
during the last weeks of October 2015. This is the throughput
requirement for our system, when all processing tasks (feature
extraction, classification, etc) are taken into account.

Initially, we run our system with no parallelism at all. It
turned out that the rate of tweets generated by the stream,
was higher than the achieved throughput of our system. This
motivates the need for designing a scalable solution for real-
time sentiment analysis in Twitter, as the processing overhead
imposed by the various modules (e.g., feature extraction)
can be significant. We increased the parallelism by providing
different parallelism hints to our topology. Our experiments
showed that even when using moderate parallelism (two in-
stances of each task), we achieved to process all incoming
tweets and match the rate of tweet generation. Table VI
summarizes the obtained results.

VI. CONCLUSIONS

In this paper, we presented a real-time system to identify the
sentiment polarity in microblogging. Innovative features of our
approach include: (a) the use of train datasets with contents
of high variety, (b) the provision of a feedback mechanism
that is adaptable to dynamic contents, (c) the combination of
multiple features (incl. prior polarity, text similarity, pattern
detection), (d) the use of ensemble learning methods, and
(e) a scalable system implementation for real-time sentiment
analysis in Storm. Our experimental study shows that Part-
Of-Speech tags, Emoticons and prior polarity are the most
significant features in the sentiment analysis of Twitter data.
In the online process, our study shows that the feedback
may contribute to the classification accuracy, especially when
“emoticon-harvested” tweets are not used.

ACKNOWLEDGMENT

This work has been co-financed by ESF and Greek national funds
through the Operational Program “Education and Lifelong Learning”
of the National Strategic Reference Framework (NSRF) - Research
Funding Program: Aristeia II, Project: ROADRUNNER. This work
has been partly supported by the University of Piraeus Research
Center.

9The public Streaming API sample endpoints are reported to provide
approximately 1% of the public Tweet volumes at any time.

REFERENCES

[1] Storm: Distributed and fault-tolerant real-time computation. http://storm.
apache.org/.

[2] S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: An
enhanced lexical resource for sentiment analysis and opinion mining.
In Proc. of LREC, 2010.

[3] S. Batra and D. Rao. Entity based sentiment analysis on twitter. Science,
9(4):1–12, 2010.

[4] J. Bollen, H. Mao, and X. Zeng. Twitter mood predicts the stock market.
J. Comput. Science, 2(1):1–8, 2011.

[5] E. Cambria, N. Howard, Y. Xia, and T. Chua. Computational intelligence
for big social data analysis [guest editorial]. IEEE Comp. Int. Mag.,
11(3):8–9, 2016.

[6] E. Cambria, H. Wang, and B. White. Guest editorial: Big social data
analysis. Knowl.-Based Syst., 69:1–2, 2014.

[7] P. Chikersal, S. Poria, E. Cambria, A. F. Gelbukh, and C. E. Siong.
Modelling public sentiment in twitter: Using linguistic patterns to
enhance supervised learning. In Proc. of CICLING, pages 49–65, 2015.

[8] L. Derczynski, A. Ritter, S. Clark, and K. Bontcheva. Twitter part-of-
speech tagging for all: Overcoming sparse and noisy data. In Proc. of
RANLP, pages 198–206, 2013.

[9] R. Feldman. Techniques and applications for sentiment analysis.
Commun. ACM, 56(4):82–89, 2013.

[10] N. Godbole, M. Srinivasaiah, and S. Skiena. Large-scale sentiment
analysis for news and blogs. In Proc. of ICWSM, 2007.

[11] P. H. C. Guerra, A. Veloso, W. M. Jr., and V. Almeida. From bias to
opinion: a transfer-learning approach to real-time sentiment analysis. In
Proc. of SIGKDD, pages 150–158, 2011.

[12] Y. Haimovitch, K. Crammer, and S. Mannor. More is better: Large
scale partially-supervised sentiment classication. In Proc. of ACML,
pages 175–190, 2012.

[13] T. Hoang, W. W. Cohen, and E. Lim. On modeling community behaviors
and sentiments in microblogging. In Proc. of ICDM, pages 479–487,
2014.

[14] M. Karanasou, C. Doulkeridis, and M. Halkidi. DsUniPi: An SVM-
based approach for sentiment analysis of figurative language on Twitter.
In Proc. of SemEval, 2015.

[15] V. N. Khuc, C. Shivade, R. Ramnath, and J. Ramanathan. Towards
building large-scale distributed systems for twitter sentiment analysis.
In Proc. of SAC, pages 459–464, 2012.

[16] O. Kucuktunc, B. B. Cambazoglu, I. Weber, and H. Ferhatosmanoglu. A
large-scale sentiment analysis for yahoo! answers. In Proc. of WSDM,
pages 633–642, 2012.

[17] L. I. Kuncheva. Combining Pattern Classifiers, Methods and Algorithms
(2nd Edition). Wiley, 2014.

[18] B. Liu. Sentiment analysis and subjectivity. In Handbook of Natural
Language Processing, Second Edition., pages 627–666. 2010.

[19] S. Mohammad. #emotional tweets. In Proc. of *SEM, pages 246–255,
2012.

[20] B. O’Connor, R. Balasubramanyan, B. R. Routledge, and N. A. Smith.
From tweets to polls: Linking text sentiment to public opinion time
series. In Proc. of ICWSM, 2010.

[21] T. Pedersen, S. Patwardhan, and J. Michelizzi. Wordnet: : Similarity -
measuring the relatedness of concepts. In Proc. of HLT-NAACL (Demos),
pages 1024–1025, 2004.

[22] J. Tang, C. Nobata, A. Dong, Y. Chang, and H. Liu. Propagation-based
sentiment analysis for microblogging data. In Proc. of ICDM, pages
577–585, 2015.

[23] Y. Wan and Q. Gao. An ensemble sentiment classification system of
Twitter data for airline services analysis. In Proc. of ICDMW, pages
1318–1325, 2015.

[24] H. Wang, D. Can, A. Kazemzadeh, F. Bar, and S. Narayanan. A system
for real-time twitter sentiment analysis of 2012 U.S. presidential election
cycle. In Proc. of ACL (Demos), pages 115–120, 2012.


