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Abstract

Extracting time expressions from free text
is a fundamental task for many applica-
tions. We analyze time expressions from
four different datasets and find that only a
small group of words are used to express
time information and that the words in
time expressions demonstrate similar syn-
tactic behaviour. Based on the findings,
we propose a type-based approach named
SynTime1 for time expression recognition.
Specifically, we define three main syntac-
tic token types, namely time token, mod-
ifier, and numeral, to group time-related
token regular expressions. On the types
we design general heuristic rules to rec-
ognize time expressions. In recognition,
SynTime first identifies time tokens from
raw text, then searches their surroundings
for modifiers and numerals to form time
segments, and finally merges the time seg-
ments to time expressions. As a light-
weight rule-based tagger, SynTime runs
in real time, and can be easily expanded
by simply adding keywords for the text
from different domains and different text
types. Experiments on benchmark datasets
and tweets data show that SynTime out-
performs state-of-the-art methods.

1 Introduction

Time expression plays an important role in infor-
mation retrieval and many applications in natural
language processing (Alonso et al., 2011; Campos
et al., 2014). Recognizing time expressions from
free text has attracted considerable attention since
last decade (Verhagen et al., 2007, 2010; UzZa-
man et al., 2013).

1Source: https://github.com/zhongxiaoshi/syntime

We analyze time expressions in four datasets:
TimeBank (Pustejovsky et al., 2003b), Giga-
word (Parker et al., 2011), WikiWars (Mazur and
Dale, 2010), and Tweets. From the analysis we
make four findings about time expressions. First,
most time expressions are very short, with 80%
of time expressions containing no more than three
tokens. Second, at least 91.8% of time expres-
sions contain at least one time token. Third, the
vocabulary used to express time information is
very small, with a small group of keywords. Fi-
nally, words in time expressions demonstrate sim-
ilar syntactic behaviour. All the findings relate to
the principle of least effort (Zipf, 1949). That is,
people tend to act under the least effort in order
to minimize the cost of energy at both individual
level and collective level to language usage (Zipf,
1949). Time expression is part of language and
acts as an interface of communication. Short ex-
pressions, occurrence, small vocabulary, and sim-
ilar syntactic behaviour all reduce the cost of en-
ergy required to communicate.

According to the findings we propose a type-
based approach named SynTime (‘Syn’ stands for
syntactic) to recognize time expressions. Specif-
ically, we define three main token types, namely
time token, modifier, and numeral, to group time-
related token regular expressions. Time tokens are
the words that explicitly express time information,
such as time units (e.g., ‘year’). Modifiers mod-
ify time tokens; they appear before or after time
tokens, e.g., ‘several’ and ‘ago’ in ‘several years
ago.’ Numerals are ordinals and numbers. From
free text SynTime first identifies time tokens, then
recognizes modifiers and numerals.

Naturally, SynTime is a rule-based tagger. The
key difference between SynTime and other rule-
based taggers lies in the way of defining token
types and the way of designing rules. The defini-
tion of token type in SynTime is inspired by part-
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of-speech in which “linguists group some words
of language into classes (sets) which show sim-
ilar syntactic behaviour.” (Manning and Schutze,
1999) SynTime defines token types for tokens ac-
cording to their syntactic behaviour. Other rule-
based taggers define types for tokens based on
their semantic meaning. For example, SUTime
defines 5 semantic modifier types, such as fre-
quency modifiers;2 while SynTime defines 5 syn-
tactic modifier types, such as modifiers that appear
before time tokens. (See Section 4.1 for details.)
Accordingly, other rule-based taggers design de-
terministic rules based on their meanings of to-
kens themselves. SynTime instead designs gen-
eral rules on the token types rather than on the to-
kens themselves. For example, our general rules
do not work on tokens ‘February’ nor ‘1989’ but
on their token types ‘MONTH’ and ‘YEAR.’ That
is why we call SynTime a type-based approach.
More importantly, other rule-based taggers design
rules in a fixed method, including fixed length and
fixed position. In contrast, SynTime designs gen-
eral rules in a heuristic way, based on the idea of
boundary expansion. The general heuristic rules
are quite light-weight that it makes SynTime much
more flexible and expansible, and leads SynTime
to run in real time.

The heuristic rules are designed on token types
and are independent of specific tokens, SynTime
therefore is independent of specific domains, spe-
cific text types, and even specific languages that
consist of specific tokens. In this paper, we
test SynTime on specific domains and specific
text types in English. (The test for other lan-
guages needs only to construct a collection of to-
ken regular expressions in the target language un-
der our defined token types.) Specifically, we eval-
uate SynTime against three state-of-the-art meth-
ods (i.e., HeidelTime, SUTime, and UWTime)
on three datasets: TimeBank, WikiWars, and
Tweets.3 TimeBank and Tweets are comprehen-
sive datasets while WikiWars is a specific domain
dataset about war; TimeBank and WikiWars are
the datasets in formal text while Tweets dataset
is in informal text. Experiments show that Syn-
Time achieves comparable results on WikiWars
dataset, and significantly outperforms the three
state-of-the-art baselines on TimeBank and Tweets

2
https://github.com/stanfordnlp/CoreNLP/tree/

master/src/edu/stanford/nlp/time/rules
3Gigaword dataset is not used in our experiments because the labels in the

dataset are not the ground truth labels but instead are automatically generated
by other taggers.

datasets. More importantly, SynTime achieves the
best recalls on all three datasets and exceptionally
good results on Tweets dataset. To sum up, we
make the following contributions.
• We analyze time expressions from four

datasets and make four findings. The findings
provide evidence in terms of time expression
for the principle of least effort (Zipf, 1949).
• We propose a time tagger named SynTime

to recognize time expressions using syntactic
token types and general heuristic rules. Syn-
Time is independent of specific tokens, and
therefore independent of specific domains,
specific text types, and specific languages.
• We conduct experiments on three datasets,

and the results demonstrate the effectiveness
of SynTime against state-of-the-art baselines.

2 Related Work

Many research works on time expression identifi-
cation are reported in TempEval exercises (Verha-
gen et al., 2007, 2010; UzZaman et al., 2013). The
task is divided into two subtasks: recognition and
normalization.

Rule-based Time Expression Recognition.
Rule-based time taggers like GUTime, Heidel-
Time, and SUTime, predefine time-related words
and rules (Verhagen et al., 2005; Strötgen and
Gertz, 2010; Chang and Manning, 2012). Heidel-
Time (Strötgen and Gertz, 2010) hand-crafts rules
with time resources like weekdays and months,
and leverages language clues like part-of-speech
to identify time expression. SUTime (Chang
and Manning, 2012) designs deterministic rules
using a cascade finite automata (Hobbs et al.,
1997) on regular expressions over tokens (Chang
and Manning, 2014). It first identifies individual
words, then expands them to chunks, and finally
to time expressions. Rule-based taggers achieve
very good results in TempEval exercises.

SynTime is also a rule-based tagger while its
key difference from other rule-based taggers is that
between the rules and the tokens it introduces a
layer of token type; its rules work on token types
and are independent of specific tokens. Moreover,
SynTime designs rules in a heuristic way.

Machine Learning based Method. Machine
learning based methods extract features from the
text and apply statistical models on the features for
recognizing time expressions. Example features
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include character features, word features, syntac-
tic features, semantic features, and gazetteer fea-
tures (Llorens et al., 2010; Filannino et al., 2013;
Bethard, 2013). The statistical models include
Markov logic network, logistic regression, sup-
port vector machines, maximum entropy, and con-
ditional random fields (Llorens et al., 2010; Uz-
Zaman and Allen, 2010; Filannino et al., 2013;
Bethard, 2013). Some models obtain good perfor-
mance, and even achieve the highest F1 of 82.71%
on strict match in TempEval-3 (Bethard, 2013).

Outside TempEval exercises, Angeli et al. lever-
age compositional grammar and employ a EM-
style approach to learn a latent parser for time
expression recognition (Angeli et al., 2012). In
the method named UWTime, Lee et al. handcraft
a combinatory categorial grammar (CCG) (Steed-
man, 1996) to define a set of lexicon with rules
and use L1-regularization to learn linguistic con-
text (Lee et al., 2014). The two methods explicitly
use linguistic information. In (Lee et al., 2014),
especially, CCG could capture rich structure in-
formation of language, similar to the rule-based
methods. Tabassum et al. focus on resolving the
dates in tweets, and use distant supervision to rec-
ognize time expressions (Tabassum et al., 2016).
They use five time types and assign one of them
to each word, which is similar to SynTime in the
way of defining types over tokens. However, they
focus only on the type of date, while SynTime
recoginizes all the time expressions and does not
involve learning and runs in real time.

Time Expression Normalization. Methods in
TempEval exercises design rules for time ex-
pression normalization (Verhagen et al., 2005;
Strötgen and Gertz, 2010; Llorens et al., 2010; Uz-
Zaman and Allen, 2010; Filannino et al., 2013;
Bethard, 2013). Because the rule systems have
high similarity, Llorens et al. suggest to construct
a large knowledge base as a public resource for the
task (Llorens et al., 2012). Some researchers treat
the normalization process as a learning task and
use machine learning methods (Lee et al., 2014;
Tabassum et al., 2016). Lee et al. (Lee et al., 2014)
use AdaGrad algorithm (Duchi et al., 2011) and
Tabassum et al. (Tabassum et al., 2016) use a log-
linear algorithm to normalize time expressions.

SynTime focuses only on the recognition task.
The normalization could be achieved by using
methods similar to the existing rule systems, be-
cause they are highly similar (Llorens et al., 2012).

Table 1: Statistics of the datasets (A tweet here is
a document.)

Dataset #Docs #Words #TIMEX
TimeBank 183 61,418 1,243
Gigaword 2,452 666,309 12,739
WikiWars 22 119,468 2,671
Tweets 942 18,199 1,127
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Figure 1: Length distribution of time expressions

3 Time Expression Analysis

3.1 Dataset
We conduct an analysis on four datasets: Time-
Bank, Gigaword, WikiWars, and Tweets. Time-
Bank (Pustejovsky et al., 2003b) is a benchmark
dataset in TempEval series (Verhagen et al., 2007,
2010; UzZaman et al., 2013), consisting of 183
news articles. Gigaword (Parker et al., 2011) is
a large automatically labelled dataset with 2,452
news articles and used in TempEval-3. WikiWars
dataset is derived from Wikipedia articles about
wars (Mazur and Dale, 2010). Tweets is our man-
ually annotated dataset with 942 tweets of which
each contains at least one time expression. Table 1
summarizes the datasets.

3.2 Finding
From the four datasets, we analyze their time ex-
pressions and make four findings. We will see that
despite the four datasets vary in corpus sizes, in
text types, and in domains, their time expressions
demonstrate similar characteristics.

Finding 1 Time expressions are very short. More
than 80% of time expressions contain no more
than three words and more than 90% contain no
more than four words.

Figure 1 plots the length distribution of time ex-
pressions. Although the texts are collected from
different sources (i.e., news articles, Wikipedia ar-
ticles, and tweets) and vary in sizes, the length
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Table 2: The percentage of time expressions that
contain at least one time token, and the average
length of time expressions

Dataset Percent Average Length
TimeBank 94.61 2.00
Gigaword 96.44 1.70
WikiWars 91.81 2.38
Tweets 96.01 1.51

Table 3: Number of distinct words and number of
distinct time tokens in time expressions

Dataset #Words #Time Tokens
TimeBank 130 64
Gigaword 214 80
WikiWars 224 74
Tweets 107 64

of time expressions follow a similar distribution.
In particular, the one-word time expressions range
from 36.23% in WikiWars to 62.91% in Tweets. In
informal communication people tend to use words
in minimum length to express time information.
The third column in Table 2 reports the average
length of time expressions. On average, time ex-
pressions contain about two words.

Finding 2 More than 91% of time expressions
contain at least one time token.

The second column in Table 2 reports the per-
centage of time expressions that contain at least
one time token. We find that at least 91.81% of
time expressions contain time token(s). (Some
time expressions have no time token but depend
on other time expressions; in ‘2 to 8 days,’ for ex-
ample, ‘2’ depends on ‘8 days.’) This suggests that
time tokens account for time expressions. There-
fore, to recognize time expressions, it is essential
to recognize their time tokens.

Finding 3 Only a small group of time-related key-
words are used to express time information.

From the time expressions in all four datasets,
we find that the group of keywords used to express
time information is small.

Table 3 reports the number of distinct words and
of distinct time tokens. The words/tokens are man-
ually normalized before counting and their vari-
ants are ignored. For example, ‘year’ and ‘5yrs’
are counted as one token ‘year.’ Numerals in the
counting are ignored. Despite the four datasets

vary in sizes, domains, and text types, the num-
bers of their distinct time tokens are comparable.

Across the four datasets, the number of distinct
words is 350, about half of the simply summing of
675; the number of distinct time tokens is 123, less
than half of the simply summing 282. Among the
123 distinct time tokens, 45 appear in all the four
datasets, and 101 appear in at least two datasets.
This indicates that time tokens, which account for
time expressions, are highly overlapped across the
four datasets. In other words, time expressions
highly overlap at their time tokens.

Finding 4 POS information could not distinguish
time expressions from common words, but within
time expressions, POS tags can help distinguish
their constituents.

For each dataset we list the top 10 POS tags that
appear in time expressions, and their percentages
over the whole text. Among the 40 tags (10 ×
4 datasets), 37 have percentage lower than 20%;
other 3 are CD. This indicates that POS could not
provide enough information to distinguish time
expressions from common words. However, the
most common POS tags in time expressions are
NN*, JJ, RB, CD, and DT. Within time expressions,
the time tokens usually have NN* and RB, the mod-
ifiers have JJ and RB, and the numerals have CD.
This finding indicates that for the time expres-
sions, their similar constituents behave in similar
syntactic way. When seeing this, we realize that
this is exactly how linguists define part-of-speech
for language.4 The definition of POS for language
inspires us to define a syntactic type system for the
time expression, part of language.

The four findings all relate to the principle of
least effort (Zipf, 1949). That is, people tend to
act with least effort so as to minimize the cost of
energy at both individual and collective levels to
the language usage (Zipf, 1949). Time expression
is part of language and acts as an interface of com-
munication. Short expressions, occurrence, small
vocabulary, and similar syntactic behaviour all re-
duce the cost of energy required to communicate.

To summarize: on average, a time expression
contains two tokens of which one is time token and
the other is modifier/numeral, and the size of time
tokens is small. To recognize a time expression,
therefore, we first recognize the time token, then
recognize the modifier/numeral.

4“linguists group some words of language into classes (sets) which show
similar syntactic behaviour.” (Manning and Schutze, 1999)
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General Heuristic Rules

1989, February, 12:55, this year, 3 months ago, ...

Time Token, Modifier, Numeral

Rule level

Type level

Token level

Figure 2: Layout of SynTime. The layout consists
of three levels: token level, type level, and rule
level. Token types group the constituent tokens of
time expressions. Heuristic rules work on token
types, and are independent of specific tokens.

4 SynTime: Syntactic Token Types and
General Heuristic Rules

SynTime defines a syntactic type system for the
tokens of time expressions, and designs heuristic
rules working on the token types. Figure 2 shows
the layout of SynTime, consisting of three levels:
Token level, type level, and rule level. Token types
at the type level group the tokens of time expres-
sions. Heuristic rules lie at the rule level, work-
ing on token types rather than on tokens them-
selves. That is why the heuristic rules are gen-
eral. For example, the heuristic rules do not work
on tokens ‘1989’ nor ‘February,’ but on their to-
ken types ‘YEAR’ and ‘MONTH.’ The heuristic
rules are only relevant to token types, and are in-
dependent of specific tokens. For this reason, our
token types and heuristic rules are independent of
specific domains, specific text types, and even spe-
cific languages that consist of specific tokens. In
this paper, we test SynTime on specific domain
(i.e., war domain) and specific text types (i.e., for-
mal text and informal text) in English. The test
for other languages simply needs to construct a set
of token regular expressions in the target language
under our defined token types.

Figure 3 shows the overview of SynTime in
practice. Shown on the left-hand side, SynTime
is initialized with regular expressions over tokens.
After initialization, SynTime can be directly ap-
plied on text. On the other hand, SynTime can be
easily expanded by simply adding the time-related
token regular expressions from training text under
each defined token type. The expansion enables
SynTime to recognize time expressions in text
from different domains and different text types.

Shown on the right-hand side of Figure 3, Syn-
Time recognizes time expression through three
main steps. In the first step, SynTime identifies

Figure 3: Overview of SynTime. Left-hand side
shows the construction of SynTime, with initial-
ization using token regular expressions, and op-
tional expansion using training text. Right-hand
side shows the main steps of SynTime recogniz-
ing time expressions.

time tokens from the POS-tagged raw text. Then
around the time tokens SynTime searches for mod-
ifiers and numerals to form time segments. In the
last step, SynTime transforms the time segments
to time expressions.

4.1 SynTime Construction
We define a syntactic type system for time expres-
sion, specifically, 15 token types for time tokens,
5 token types for modifiers, and 1 token type for
numeral. Token types to tokens is like POS tags to
words; for example, ‘February’ has a POS tag of
NNP and a token type of MONTH.

Time Token. We define 15 token types for
the time tokens and use their names similar to
Joda-Time classes:5 DECADE (-), YEAR (-), SEA-
SON (5), MONTH (12), WEEK (7), DATE (-),
TIME (-), DAY TIME (27), TIMELINE (12), HOLIDAY
(20), PERIOD (9), DURATION (-), TIME UNIT (15),
TIME ZONE (6), and ERA (2). Number in ‘()’ indi-
cates the number of distinct tokens in this token
type. ‘-’ indicates that this token type involves
changing digits and cannot be counted.

Modifier. We define 3 token types for the modi-
fiers according to their possible positions relative
to time tokens. Modifiers that appear before time
tokens are PREFIX (48); modifiers after time to-
kens are SUFFIX (2). LINKAGE (4) link two time

5
http://www.joda.org/joda-time/
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tokens. Besides, we define 2 special modifier
types, COMMA (1) for comma ‘,’ and IN ARTICLE
(2) for indefinite articles ‘a’ and ‘an.’

TimeML (Pustejovsky et al., 2003a) and Time-
Bank (Pustejovsky et al., 2003b) do not treat most
prepositions like ‘on’ as a part of time expressions.
Thus SynTime does not collect those prepositions.

Numeral. Number in time expressions can be a
time token e.g., ‘10’ in ‘October 10, 2016,’ or a
modifier e.g., ‘10’ in ‘10 days.’ We define NU-
MERAL (-) for the ordinals and numbers.

SynTime Initialization. The token regular ex-
pressions for initializing SynTime are collected
from SUTime,6 a state-of-the-art rule-based tag-
ger that achieved the highest recall in TempEval-
3 (Chang and Manning, 2012, 2013). Specifically,
we collect from SUTime only the tokens and the
regular expressions over tokens, and discard its
other rules of recognizing full time expressions.

4.2 Time Expression Recognition
On the token types, SynTime designs a small set of
heuristic rules to recognize time expressions. The
recognition process includes three main steps: (1)
time token identification, (2) time segment identi-
fication, and (3) time expression extraction.

4.2.1 Time Token Identification
Identifying time tokens is simple, through match-
ing of string and regular expressions. Some words
might cause ambiguity. For example, ‘May’ could
be a modal verb, or the fifth month of year. To
filter out the ambiguous words, we use POS infor-
mation. In implementation, we use Stanford POS
Tagger;7 and the POS tags for matching the in-
stances of token types in SynTime are based on
our Finding 4 in Section 3.2.

Besides time tokens are identified, in this step,
individual token is assigned with one token type
of either modifier or numeral if it is matched with
token regular expressions. In the next two steps,
SynTime works on those token types.

4.2.2 Time Segment Identification
The task of time segment identification is to search
the surrounding of each time token identified in
previous step for modifiers and numerals, then
gather the time token with its modifiers and nu-
merals to form a time segment. The searching is

6
https://github.com/stanfordnlp/CoreNLP/tree/

master/src/edu/stanford/nlp/time/rules
7
http://nlp.stanford.edu/software/tagger.shtml

PREFIX/the PREFIX/last TIME_UNIT/week … said WEEK/Friday
s1 s2

e1 s1

(a) Stand-alone time segment to time expression

s1 s2

s1

PREFIX/the NUMERAL/third TIME_UNIT/quarter PREFIX/of YEAR/1984

(b) Merge adjacent time segments

s1 s2

s1

MONTH/January NUMERAL/13 YEAR/1951

(c) Merge overlapping time segments

s1 s2

s1

MONTH/June NUMERAL/30 COMMA/, YEAR/1990

(d) Merge overlapping time segments

s1 s2

e1 s1

NUMERAL/8 LINKAGE/to NUMERAL/20 TIME_UNIT/days

(e) Dependent time segment and time segment

Figure 4: Example time segments and time ex-
pressions. The above labels are from time segment
identification; the below labels are for time expres-
sion extraction.

under simple heuristic rules in which the key idea
is to expand the time token’s boundaries.

At first, each time token is a time segment. If
it is either a PERIOD or DURATION, then no need
to further search. Otherwise, search its left and
its right for modifiers and numerals. For the left
searching, if encounter a PREFIX or NUMERAL or
IN ARTICLE, then continue searching. For the right
searching, if encounter a SUFFIX or NUMERAL,
then continue searching. Both the left and the right
searching stop when reaching a COMMA or LINK-
AGE or a non-modifier/numeral word. The left
searching does not exceed the previous time to-
ken; the right searching does not exceed the next
time token. A time segment consists of exactly one
time token, and zero or some modifiers/numerals.

A special kind of time segments do not contain
any time token; they depend on other time seg-
ments next to them. For example, in ‘8 to 20 days,’
‘to 20 days’ is a time segment, and ‘8 to’ forms a
dependent time segment. (See Figure 4(e).)

4.2.3 Time Expression Extraction
The task of time expression extraction is to extract
time expressions from the identified time segments
in which the core step is to determine whether to
merge two adjacent or overlapping time segments
into a new time segment.
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We scan the time segments in a sentence from
beginning to the end. A stand-alone time segment
is a time expression. (See Figure 4(a).) The fo-
cus is to deal with two or more time segments that
are adjacent or overlapping. If two time segments
s1 and s2 are adjacent, merge them to form a new
time segment s1. (See Figure 4(b).) Consider that
s1 and s2 overlap at a shared boundary. Accord-
ing to our time segment identification, the shared
boundary could be a modifier or a numeral. If the
word at the shared boundary is neither a COMMA
nor a LINKAGE, then merge s1 and s2. (See Fig-
ure 4(c).) If the word is a LINKAGE, then extract s1
as a time expression and continue scanning. When
the shared boundary is a COMMA, merge s1 and s2
only if the COMMA’s previous token and its next
token satisfy the three conditions: (1) the previous
token is a time token or a NUMERAL; (2) the next
token is a time token; and (3) the token types of
the previous token and of the next token are not
the same. (See Figure 4(d).)

Although Figure 4 shows the examples as token
types together with the tokens, we should note that
the heuristic rules only work on the token types.
After the extraction step, time expressions are ex-
ported as a sequence of tokens from the sequence
of token types.

4.3 SynTime Expansion

SynTime could be expanded by simply adding
new words under each defined token type with-
out changing any rule. The expansion requires
the words to be added to be annotated manually.
We apply the initial SynTime on the time expres-
sions from training text and list the words that are
not covered. Whether the uncovered words are
added to SynTime is manually determined. The
rule for determination is that the added words can
not cause ambiguity and should be generic. Wiki-
Wars dataset contains a few examples like this:
‘The time Arnold reached Quebec City.’ Words
in this example are extremely descriptive, and we
do not collect them. In tweets, on the other hand,
people may use abbreviations and informal vari-
ants; for example, ‘2day’ and ‘tday’ are popular
spellings of ‘today.’ Such kind of abbreviations
and informal variants will be collected.

According to our findings, not many words are
used to express time information, the manual ad-
dition of keywords thus will not cost much. In
addition, we find that even in tweets people tend

to use formal words. In the Twitter word clus-
ters trained from 56 million English tweets,8 the
most often used words are the formal words, and
their frequencies are much greater than the infor-
mal words’. The cluster of ‘today,’9 for example,
its most often use is the formal one, ‘today,’ which
appears 1,220,829 times; while its second most of-
ten use ‘2day’ appears only 34,827 times. The
low rate of informal words (e.g., about 3% in ‘to-
day’ cluster) suggests that even in informal envi-
ronment the manual keyword addition costs little.

5 Experiments

We evaluate SynTime against three state-of-the-
art baselines (i.e., HeidelTime, SUTime, and UW-
Time) on three datasets (i.e., TimeBank, Wiki-
Wars, and Tweets). WikiWars is a specific domain
dataset about war; TimeBank and WikiWars are
the datasets in formal text while Tweets dataset is
in informal text. For SynTime we report the results
of its two versions: SynTime-I and SynTime-E.
SynTime-I is the initial version, and SynTime-E is
the expanded version of SynTime-I.

5.1 Experiment Setting

Datasets. We use three datasets of which
TimeBank and WikiWars are benchmark datasets
whose details are shown in Section 3.1; Tweets
is our manually labeled dataset that are collected
from Twitter. For Tweets dataset, we randomly
sample 4000 tweets and use SUTime to tag them.
942 tweets of which each contains at least one time
expression. From the remaining 3,058 tweets,
we randomly sample 500 and manually annotate
them, and find that only 15 tweets contain time ex-
pressions. We therefore roughly consider that SU-
Time misses about 3% time expressions in tweets.
Two annotators then manually annotate the 942
tweets with discussion to final agreement accord-
ing to the standards of TimeML and TimeBank.
We finally get 1,127 manually labeled time expres-
sions. For the 942 tweets, we randomly sample
200 tweets as test set, and the rest 742 as training
set, because a baseline UWTime requires training.

Baseline Methods. We compare SynTime with
methods: HeidelTime (Strötgen and Gertz, 2010),
SUTime (Chang and Manning, 2012), and UW-

8
http://www.cs.cmu.edu/˜ark/TweetNLP/cluster_

viewer.html
9
http://www.cs.cmu.edu/˜ark/TweetNLP/paths/

01111110010.html
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Table 4: Overall performance. The best results are in bold face and the second best are underlined. Some
results are borrowed from their original papers and the papers are indicated by the references.

Dataset Method Strict Match Relaxed Match
Pr. Re. F1 Pr. Re. F1

TimeBank

HeidelTime(Strotgen et al., 2013) 83.85 78.99 81.34 93.08 87.68 90.30
SUTime(Chang and Manning, 2013) 78.72 80.43 79.57 89.36 91.30 90.32

UWTime(Lee et al., 2014) 86.10 80.40 83.10 94.60 88.40 91.40
SynTime-I 91.43 92.75 92.09 94.29 95.65 94.96
SynTime-E 91.49 93.48 92.47 93.62 95.65 94.62

WikiWars

HeidelTime(Lee et al., 2014) 85.20 79.30 82.10 92.60 86.20 89.30
SUTime 78.61 76.69 76.64 95.74 89.57 92.55

UWTime(Lee et al., 2014) 87.70 78.80 83.00 97.60 87.60 92.30
SynTime-I 80.00 80.22 80.11 92.16 92.41 92.29
SynTime-E 79.18 83.47 81.27 90.49 95.39 92.88

Tweets

HeidelTime 89.58 72.88 80.37 95.83 77.97 85.98
SUTime 76.03 77.97 76.99 88.43 90.68 89.54
UWTime 88.54 72.03 79.44 96.88 78.81 86.92

SynTime-I 89.52 94.07 91.74 93.55 98.31 95.87
SynTime-E 89.20 94.49 91.77 93.20 98.78 95.88

Time (Lee et al., 2014). HeidelTime and SU-
Time both are rule-based methods, and UWTime
is a learning method. When training UWTime on
Tweets, we try two settings: (1) train with only
Tweets training set; (2) train with TimeBank and
Tweets training set. The second setting achieves
slightly better result and we report that result.

Evaluation Metrics. We follow TempEval-3 and
use their evaluation toolkit10 to report Precision,
Recall, and F1 in terms of strict match and re-
laxed match (UzZaman et al., 2013).

5.2 Experiment Result

Table 4 reports the overall performance. Among
the 18 measures, SynTime-I and SynTime-E
achieve 12 best results and 13 second best re-
sults. Except the strict match on WikiWars dataset,
both SynTime-I and SynTime-E achieve F1 above
91%. For the relaxed match on all three datasets,
SynTime-I and SynTime-E achieve recalls above
92%. The high recalls are consistent with our
finding that at least 91.81% of time expressions
contain time token(s). (See Table 2.) This indi-
cates that SynTime covers most of time tokens.
On Tweets dataset, SynTime-I and SynTime-E
achieve exceptionally good performance. Their F1

reach 91.74% with 11.37% improvement in strict
match and 95.87% with 6.33% improvement in re-

10
http://www.cs.rochester.edu/˜naushad/tempeval3/

tools.zip

laxed match. The reasons are that in informal en-
vironment people tend to use time expressions in
minimum length, (62.91% of one-word time ex-
pressions in Tweets; see Figure 1.) the size of time
keywords is small, (only 60 distinct time tokens;
see Table 3.) and even in tweets people tend to
use formal words. (See Section 4.3 for our finding
from Twitter word clusters.) For precision, Syn-
Time achieves comparable results in strict match
and performs slightly poorer in relaxed match.

5.2.1 SynTime-I vs. Baseline Methods

On TimeBank dataset, SynTime-I achieves F1 of
92.09% in strict match and of 94.96% in relaxed
match. On Tweets, SynTime-I achieves 91.74%
and 95.87%, respectively. It outperforms all the
baseline methods. The reason is that for the rule-
based time taggers, their rules are designed in a
fixed way, lacking flexibility. For example, SU-
Time could recognize ‘1 year’ but not ‘year 1.’
For the machine learning based methods, some of
the features they used actually hurt the modelling.
Time expressions involve quite many changing
numbers which in themselves affect the pattern
recognition. For example, it is difficult to build
connection between ‘May 22, 1986’ and ‘Febru-
ary 01, 1989’ at the level of word or of character.
One suggestion is to consider a type-based learn-
ing method that could use type information. For
example, the above two time expressions refer to
the same pattern of ‘MONTH NUMERAL COMMA
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Table 5: Number of time tokens and modifiers for
expansion

Dataset #Time Tokens #Modifiers
TimeBank 3 5
WikiWars 16 21
Tweets 3 2

YEAR’ at the level of token type. POS is a kind of
type information. But according to our analysis,
POS could not distinguish time expressions from
common words. Features need carefully design-
ing. On WikiWars, SynTime-I achieves competi-
tive results in both matches. Time expressions in
WikiWars include lots of prepositions and quite a
few descriptive time expressions. SynTime could
not fully recognize such kinds of time expressions
because it follows TimeML and TimeBank.

5.2.2 SynTime-E vs. SynTime-I
Table 5 lists the number of time tokens and modi-
fiers added to SynTime-I to get SynTime-E.

On TimeBank and Tweets datasets, only a few
tokens are added, the corresponding results are af-
fected slightly. This confirms that the size of time
words is small, and that SynTime-I covers most of
time words. On WikiWars dataset, relatively more
tokens are added, SynTime-E performs much bet-
ter than SynTime-I, especially in recall. It im-
proves the recall by 3.25% in strict match and by
2.98% in relaxed match. This indicates that with
more words added from specific domains (e.g.,
WikiWars dataset about war), SynTime can signif-
icantly improve the performance.

5.3 Limitations

SynTime assumes that words are tokenized and
POS tagged correctly. In reality, however, the tok-
enized and tagged words are not that perfect, due
to the limitation of used tools. For example, Stan-
ford POS Tagger assigns VBD to the word ‘sat’ in
‘friday or sat’ while whose tag should be NNP. The
incorrect tokens and POS tags affect the result.

6 Conclusion and future work

We conduct an analysis on time expressions from
four datasets, and find that time expressions in
general are very short and expressed by a small
vocabulary, and words in time expressions demon-
strate similar syntactic behavior. Our findings pro-
vide evidence in terms of time expression for the
principle of least effort (Zipf, 1949). Inspired by

part-of-speech, based on the findings, we define
a syntactic type system for the time expression,
and propose a type-based time expression tagger,
named by SynTime. SynTime defines syntactic
token types for tokens and on the token types it
designs general heuristic rules based on the idea
of boundary expansion. Experiments on three
datasets show that SynTime outperforms the state-
of-the-art baselines, including rule-based time tag-
gers and machine learning based time tagger. Be-
cause our heuristic rules are quite simple, Syn-
Time is light-weight and runs in real time.

Our token types and heuristic rules are indepen-
dent of specific tokens, SynTime therefore is in-
dependent of specific domains, specific text types,
and even specific languages that consist of specific
tokens. In this paper, we test SynTime on specific
domains and specific text types in English. The
test for other languages needs only to construct a
collection of token regular expressions in the tar-
get language under our defined token types.

Time expression is part of language and follows
the principle of least effort. Since language us-
age relates to human habits (Zipf, 1949; Chomsky,
1986; Pinker, 1995), we might expect that humans
would share some common habits, and therefore
expect that other parts of language would more or
less follow the same principle. In the future we
will try our analytical method on other parts of lan-
guage.
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