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ABSTRACT
Wefind from four datasets that time expressions are formed by loose
structure and the words used to express time information can differ-
entiate time expressions from common text. The findings drive us to
design a learning method named TOMN to model time expressions.
TOMN defines a constituent-based tagging scheme named TOMN
scheme with four tags, namely T, O, M, and N, indicating the con-
stituents of time expression, namely Time token,Modifier,Numeral,
and the words Outside time expression. In modeling, TOMN as-
signs a word with a TOMN tag under conditional random fields
with minimal features. Essentially, our constituent-based TOMN
scheme overcomes the problem of inconsistent tag assignment that
is caused by the conventional position-based tagging schemes (e.g.,
BIO scheme and BILOU scheme). Experiments show that TOMN is
equally or more effective than state-of-the-art methods on various
datasets, and much more robust on cross-datasets. Moreover, our
analysis can explain many empirical observations in other works
about time expression recognition and named entity recognition.
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1 INTRODUCTION
Time information plays an increasingly important role in data min-
ing, information retrieval, and natural language processing [1, 8].
Researchers from these fields have devoted tremendous effort to
specify standards for time expression annotation [14, 18, 30, 32],
build annotated corpora for time expression [18, 27, 31], and recog-
nize time expressions from free text [5–7, 11, 42, 43, 45].

We analyze four datasets (i.e., TimeBank [31], Gigaword [28],
WikiWars [27], and Tweets [47]) for the characteristics of time ex-
pressions and have two important findings about their organization
and constituent words. First, time expressions are formed by loose
structure, with more than 53.5% of distinct time tokens appearing
in different positions within time expressions. Second, time tokens
can differentiate time expressions from common text; more than
91.8% of time expressions have at least one time token while no
more than 0.7% of common text contain time tokens.
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1) September/U                     2) September/B 2006/L

3) 2006/B September/L     4) 1/B September/I 2006/L

(a) BILOU tag assignment: ‘September’ in different positions within labeled time
expressions is assigned with different tags of U, B, L, or I. The inconsistent tag
assignment reduces the predictive power of ‘September,’ and this contradicts the
finding that time tokens can differentiate time expressions from common text.

1) September/T                     2) September/T 2006/T

3) 2006/T September/T     4) 1/N September/T 2006/T

(b) TOMN tag assignment: ‘September’ in different positions within labeled time
expressions is consistently assigned with the same tag of T. The consistent tag
assignment protects the ‘September’s predictive power.

Figure 1: BILOU and TOMN tag assignment during training.
BILOU scheme is based on the position within the chunk,
while TOMN scheme bases on the constituent of the chunk.
Here inconsistent tag assignment is defined as that during
training, a word is assigned with different tags because the
word appears in different positions within labeled chunks.2

The findings motivate us to design a learning method named
TOMN to model time expressions. Specifically, TOMN defines a
constituent-based tagging scheme named TOMN scheme,1 consist-
ing of four tags, namely T, O,M, and N, indicating the constituents
of time expression, namely Time token,Modifier, Numeral, and the
words Outside time expression. Time tokens include the words that
explicitly express information about time, such as ‘2006,’ ‘month,’
and ‘September.’ Modifiers are the words that modify time tokens
and appear around them; for example, ‘last’ modifies ‘month’ in
‘last month.’ Numerals are the ordinals and numbers (except the
year like ‘2006’). TOMN models time expressions under conditional
random fields (CRFs) [19] with only a kind of pre-tag features and
the lemma features; it assigns a word with a TOMN tag.

TOMN scheme can keep the tag assignment consistent during
training and therefore overcomes the problem of inconsistent tag
assignment. (In a supervised learning procedure, tag assignment oc-
curs in feature extraction during training and in tag prediction. We
focus on the training stage to analyze the impact of tag assignment.)
The loose structure by which time expressions are formed exhibits
in two aspects. First, many time expressions consist of loose collo-
cations. For example, the time token ‘September’ can form a time
expression by itself, or forms ‘September 2006’ by another time
1 ‘TOMN’ denotes our method and ‘TOMN scheme’ denotes the tagging scheme that TOMN defines.
2The definition of inconsistent tag assignment can be generalized as that during
training, a unit in different labeled instances is assigned with different tags for some
reason while the unit should be consistently assigned with the same tag. The unit of
interest can be a word, a relation, a webpage, or a group of words as a whole, etc.
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token appearing after it, or ‘1 September 2006’ by a numeral before
it and another time token after it. Second, some time expressions
can change their word order without changing their meanings. For
example, ‘September 2006’ and ‘2006 September’ express the same
meaning. The conventional tagging schemes like BILOU [33] are
based on the position within the chunk, namely a Unit-word chunk,
and the Beginning, Inside, and Last word of a multi-word chunk.
Under BILOU scheme, a word that appears in different positions
within labeled time expressions is assigned with different tags; for
example, the above ‘September’ can be assigned with U, B, L, or I.
See Figure 1(a). The inconsistent tag assignment causes difficulty
for statistical models to model time expressions. First, inconsistent
tag assignment reduces the predictive power of lexicon, and this
contradicts the finding that time tokens can differentiate time ex-
pressions from common text. Second, inconsistent tag assignment
might cause the problem of tag imbalance. Our TOMN scheme in-
stead is based on the constituent of the chunk (i.e., Time token,
Modifier, andNumeral) and assigns the same constituent word with
the same tag, regardless of its frequency and its positions within
time expressions. Under TOMN scheme, for example, the above
‘September’ is consistently assigned with T. See Figure 1(b). With
consistent tag assignment, TOMN scheme avoids the potential tag
imbalance and protects time tokens’ predictive power.

We evaluate TOMN against five state-of-the-art methods (i.e.,
HeidelTime [39], SUTime [9], SynTime [47], ClearTK [4], and UW-
Time [21]) on three datasets (i.e., TE-3 [42], WikiWars [27], and
Tweets [47]).3 Experiments show that TOMN is equally or more ef-
fective than the state-of-the-art methods, and much more robust on
cross-dataset performance. Experiments also show the advantage
of TOMN scheme over the position-based tagging schemes.

In addition, we find that the named entities in CoNLL03 English
NER dataset [34] demonstrate common characteristics similar to
the time expressions (see Section 6 for details). The finding suggests
that the problem of inconsistent tag assignment widely exists in
the position-based tagging schemes and that our idea of defining
constituent-based tagging scheme should be widely effective for
general entities. In the future we will further develop that idea.

To summarize, we make the contributions as follows.
• We analyze four diverse datasets for the characteristics of
time expressions and have two important findings about their
organization and constituent words.
• Wediscover a fundamental problem underlying in the position-
based tagging schemes: inconsistent tag assignment. To over-
come that problem we define a constituent-based tagging
scheme to model time expressions. Our method provides an
idea to model target entities based on their constituents.
• We conduct experiments on various datasets, and the results
show the effectiveness, efficiency, and robustness of ourmethod
compared with state-of-the-art methods. The results also show
the advantage of our constituent-based tagging scheme over
the position-based tagging schemes.
• The analysis in this work can help explain many empirical
results and observations reported in other works about time
expression recognition and named entity recognition.

3We follow [47] not to use the Gigaword dataset in our experiments because its labels are automat-
ically generated by other taggers but not the ground truth.

2 RELATEDWORK
Time expression identification aims to automatically identify time
expressions from free text and it can be divided into two subtasks,
namely recognition and normalization. In this paper we focus on
the recognition. Methods for time expression recognition can be
categorized into rule-based methods and learning-based methods.

Rule-based Methods. Rule-based methods like TempEx, GUTime,
HeidelTime, and SUTime mainly handcraft deterministic rules to
identify time expressions. TempEx and GUTime use both hand-
crafted rules and machine-learnt rules to resolve time expressions
[26, 44]. HeidelTime manually designs rules with time resources
to recognize time expressions [39]. SUTime designs deterministic
rules at three levels (i.e., individual word level, chunk level, and
time expression level) for time expression recognition [9]. A recent
type-based time tagger, SynTime, designs general heuristic rules
with a token type system to recognize time expressions [47].

TOMN uses the token regular expressions, similar to SUTime
[9] and SynTime [47], and further groups them into three token
types, similar to SynTime. While SynTime further defines 21 token
types for the constituent words of time expression, TOMN uses the
three general token types that are helpful for a learning method to
connect the words with low frequencies to the words with high fre-
quencies. And TOMN leverages statistical information from entire
corpus to improve the precisions and alleviate the deterministic
role of deterministic rules and heuristic rules.

Learning-based Methods. Learning-based methods in TempEval
series mainly extract features from text (e.g., character features,
word features, syntactic features, and semantic features), and on
the features apply statistical models (e.g., CRFs, logistic regres-
sion, maximum entropy, Markov logic network, and support vector
machines) to model time expressions [4, 15, 23, 41]. Besides the
standard methods, Angeli et al., and Angeli and Uszkoreit exploit
an EM-style approach with compositional grammar to learn latent
time parsers [2, 3]. Lee et al. leverage combinatory categorial gram-
mar (CCG) [36] and define a collection of lexicon with linguistic
context to model time expressions [21].

Unlike [4, 15, 17, 23, 41] which use the standard features, TOMN
derives features according to the characteristics of time expressions
and uses only a kind of pre-tag features and the lemma features;
which can enhance the impact of the significant features and reduce
the impact of the insignificant features. Unlike [2, 3, 21] which
use fixed structure information, TOMN uses the loose structure
information by grouping the constituent words of time expression
under three token types, which can fully account for the loose
structure of time expressions. More importantly, TOMN models
time expressions under a CRFs framework with a constituent-based
tagging scheme, which can keep the tag assignment consistent.

Time Expression Normalization.Methods for time expression
normalization are mainly based on rules [4, 15, 23, 39, 41, 44]. Since
the rule methods are highly similar, Llorens et al. suggest to con-
struct a large shared knowledge base for public use [22]. Lee et
al., Angeli et al., and Angeli and Uszkoreit combine grammar rules
and machine learning techniques to normalize time expressions
[2, 3, 21]. TOMN focuses on the recognition and leaves the normal-
ization to those highly similar rule methods or the future work.
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Table 1: Dataset statistics (‘timex’ denotes time expression.)

Dataset #Documents #Words #Timex
TimeBank 183 61,418 1,243
Gigaword 2,452 666,309 12,739
WikiWars 22 119,468 2,671
Tweets 942 18,199 1,127

Table 2: Percentage of distinct time tokens and modifiers
that appear in different positions within time expressions

Dataset BIO Scheme BILOU Scheme
Time Token Modifier Time Token Modifier

TimeBank 58.18 33.33 63.64 33.33
Gigaword 61.29 45.83 77.05 46.00
WikiWars 53.57 26.19 61.40 29.55
Tweets 67.21 27.59 72.58 27.59

3 TIME EXPRESSION ANALYSIS

Datasets. We analyze the time expressions from four datasets:
TimeBank, Gigaword, WikiWars, and Tweets. TimeBank is a bench-
mark dataset and consists of 183 news articles [31]. Gigaword con-
sists of 2,452 news articles with automatically annotated time ex-
pressions [28]. WikiWars is constructed by collecting war articles
from Wikipedia [27]. Tweets consists of 942 tweets collected from
Twitter [47]. The four datasets cover comprehensive data (Time-
Bank, Gigaword, and Tweets) and specific domain data (WikiWars)
as well as formal text (TimeBank, Gigaword, and WikiWars) and
informal text (Tweets). Table 1 summarizes the dataset statistics.

3.1 Findings
Although the four datasets differ in source, domain, corpus size,
and text type, their time expressions demonstrate some common
characteristics. We find such two common characteristics of time
expressions about their organization and constituent words.

Finding 1. Time expressions are formed by loose structure; more
than 53.5% of time tokens appear in different positions within time
expressions.

We find that time expressions are formed by loose structure
and the loose structure exhibits in two aspects. First, many time
expressions consist of loose collocations. For example, the time
token ‘September’ can form a time expression by itself, or forms
‘September 2006’ by another time token appearing after it, or ‘1
September 2006’ by a numeral before it and another time token
after it. Second, some time expressions can change their word order
without changing their meanings. For example, ‘September 2006’
can be written as ‘2006 September’ with the same meaning. From
the point of view of the position within time expressions, the ‘Sep-
tember’ may appear as the (i) beginning or (ii) inside word of time
expression when time expressions are modeled by BIO scheme; or it
may appear as (1) a unit-word time expression, or the (2) beginning,
(3) inside, (4) last word of a multi-word time expression when time
expressions are modeled by BILOU scheme.

Table 3: Percentage of time expression’s constituents that ap-
pear in time expressions (Pt imex ) and in common text (Ptext )

Dataset Time Token Modifer Numeral
Pt imex Ptext Pt imex Ptext Pt imex Ptext

TimeBank 94.61 0.34 47.39 22.56 22.61 3.16
Gigaword 96.44 0.65 28.05 22.82 20.24 2.03
WikiWars 91.81 0.14 31.64 26.14 38.01 9.82
Tweets 96.01 0.50 21.38 13.03 18.81 1.28

Table 2 reports the percentage of distinct time tokens and mod-
ifiers that appear in different positions within time expressions.
‘Distinct’ here means ignoring the word variants and frequencies
during counting; for example, ‘month,’ ‘months,’ and ‘mths’ are
treated the same and are counted only once. ‘Different positions’
means the two different positions under BIO scheme and at least
two of the four different positions under BILOU scheme. For each
dataset, under BIO scheme, more than 53.5% of distinct time tokens
appear in different positions; and under BILOU scheme, more than
61.4% of distinct time tokens appear in different positions. The
number of modifiers that appear in different positions is more than
27.5%. When BIO or BILOU scheme is applied to model time expres-
sions, the appearance in different positions leads to inconsistent tag
assignment, and the inconsistent tag assignment causes difficulty
for statistical models to model time expressions. We need to explore
an appropriate tagging scheme (see Section 4.1 for details).

Finding 2. Time tokens can differentiate time expressions from
common text while modifiers and numerals cannot.

Table 3 reports the percentage of time expression’s constituent
words appearing in time expressions (Pt imex ) and in common text
(Ptext ). Common text here means the whole text with time expres-
sions excluded. Pt imex is defined by Equation (1) and Ptext is by
Equation (2), where T ∈ {time token, modi f ier , numeral }.

Pt imex (T ) =
#timex that contain T

#total timex
(1)

Ptext (T ) =
#tokens that are T

#total tokens
(2)

From the second column of Table 3 we can see that more than
91.8% of time expressions contain at least one time token; the per-
centage 91.8% is consistent with the one analyzed by Zhong et al.
[47]. (Some time expressions without time token depend on other
time expressions; for example, ‘95’ depends on ‘100 days’ in ‘95 to
100 days.’) By contrast, the third column shows that no more than
0.7% of common text contain time tokens. This indicates that time
tokens can differentiate time expressions from common text. On
the other hand, the last four columns show that on average, 32.1% of
time expressions and 21.1% of common text contain modifiers and
24.9% of time expressions and 4.1% of common text contain numer-
als. This indicates that modifiers and numerals cannot differentiate
time expressions from common text.

Looking at the Tweets dataset, we can see that the Pt imex of
the time tokens (96.0%) is relatively high while the Pt imex of the
modifiers (21.4%) and numerals (18.8%) are much lower than the
ones of other datasets. This indicates that in Twitter people tend to
use time expressions with fewer modifiers and numerals.
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3.2 Properties
In addition to our findings, Zhong et al. also conclude some charac-
teristics about time expressions from the same four datasets [47].
The characteristics concluded by Zhong et al. are helpful for our
analysis, so we briefly describe them here and report them as time
expressions’ properties.4

Property 1. “Time expressions are very short. More than 80% of
time expressions contain no more than three words and more than
90% contain no more than four words.” [47]

Time expressions across different datasets follow a similar length
distribution and on average, time expressions contain about two
words. For the one-word time expressions, the percentage of which
in TimeBank is 40.3%; in Gigaword the percentage is 53.9%; in
WikiWars it is 36.2%; and in Tweets it is 62.9%.

Property 2. “Only a small group of time-related keywords are
used to express time information.” [47]

There are only about 70 distinct time tokens used in individual
dataset, regardless of the corpus sizes and the number of time ex-
pressions, and only 123 distinct time tokens across different datasets.
That means time expressions are highly overlapped at their time
tokens within individual dataset and across different datasets.

Property 3. “POS information could not distinguish time expres-
sions from common words, but within time expressions, POS tags can
help distinguish their constituents.” [47]

Among the top 40 part-of-speech (POS) tags in time expressions
(10 × 4 datasets), 37 tags whose percentage over the corresponding
tags of the whole text is lower than 20%.

4 TOMN: TIME-RELATED TAGGING SCHEME
Figure 2 shows the overview of TOMN, including three parts:
TOMN scheme, TmnRegex, and time expression recognition. TOMN
scheme is a constituent-based tagging scheme with four tags. Tmn-
Regex is a set of regular expressions for time-related words. Time
expressions are modeled under a CRFs framework with the help of
TmnRegex and TOMN scheme.

4.1 TOMN Scheme
Finding 1 suggests us to explore an appropriate tagging scheme
to model time expressions. We define a constituent-based tagging
scheme named TOMN scheme with four tags: T, O, M, and N; they
indicate the constituents of time expression, namely Time token,
Modifier, and Numeral, and the words Outside time expression.

Conventional tagging schemes like BIO5 [35] and BILOU6 [33]
are based on the positionwithin the chunk. BIO refers to theBeginning,
Inside, and Outside of a chunk; BILOU refers to a Unit-word chunk,
and the Beginning, Inside, Last word of a multi-word chunk. TOMN
scheme instead is based on the constituent of the chunk, indi-
cating the constituents of time expression. Following we use BILOU
scheme, the newer version, as representative of the conventional
position-based tagging schemes for analysis.

4One of Zhong et al. concluded properties is incorporated into our Finding 2.
5The BIO scheme in this paper denotes the standard IOB2 scheme described in [35].
6The BILOU scheme is also widely known as the IOBES scheme.

TOMN Scheme

TmnRegex

Time Token

Modifier

Numeral

Feature Extractor

Raw Text

Annotated Text

CRFs-based Tagger

T (time token)

M (modifier)

N (numeral)

O (outside timex)

TOMN Pre-tag Features

Lemma Features

Figure 2: Overview of TOMN. Top-left side shows the TOMN
scheme, consisting of four tags. Bottom-left side is the Tm-
nRegex, a set of regular expressions for time-related words.
Right-hand side shows the time expression modeling, with
the help of TmnRegex and TOMN scheme.

Using BILOU scheme for time expression recognition leads to
inconsistent tag assignment. (A typical supervised learning pro-
cedure involves tag assignment in two stages; one is in feature
extraction during training and the other is in tag prediction. We
focus on the training stage to analyze the impact of tag assignment
under different kinds of tagging schemes.) Finding 1 shows that
time expressions are formed by loose structure, exhibiting in loose
collocations and exchangeable order. Under BILOU scheme, both
of loose collocations and exchangeable order lead to the problem
of inconsistent tag assignment. Suppose ‘September,’ ‘September
2006,’ ‘2006 September,’ and ‘1 September 2006’ are four manually
labeled time expressions in training data. During feature extraction,
they are assigned as ‘September/U,’ ‘September/B 2006/L,’ ‘2006/B
September/L,’ and ‘1/B September/I 2006/L’ (see Figure 1(a)). The
four ‘September’ have the same word (the word itself) and express
the same meaning (the ninth month of the year), but because they
appear in different positions within time expressions, they are as-
signed with different tags (i.e., U, B, L, and I).

The inconsistent tag assignment causes difficulty for statistical
models to model time expressions. First, inconsistent tag assign-
ment reduces the predictive power of lexicon. A word assigned
with different tags causes confusion to model the word. If a word
is assigned with different tags in equal number, then the word it-
self cannot provide any information useful to determine which tag
should be assigned to it. Reducing the predictive power of lexicon
indicates reducing the predictive power of time tokens, and this
contradicts Finding 2 which shows that time tokens can differenti-
ate time expressions from common text. Second, inconsistent tag
assignment may cause another problem: tag imbalance. If a tag of a
word dominates in training data, then all the instances of that word
in test data will be predicted as that tag. For example, ‘1 September
2006’ can be written as ‘September 1, 2006’ in some cultures. If
the training data are collected from the style of ‘1 September 2006’
in which most ‘September’ are assigned with I, then it is difficult
for the trained model to correctly predict the data collected from
the style of ‘September 1, 2006’ in which ‘September’ should be
predicted as B.
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TOMN scheme instead overcomes the problem of inconsistent
tag assignment. TOMN scheme assigns a tag to a word according
to the constituent role that the word plays in time expressions.
Since our TmnRegex well defines the constituent words of time
expression (see Section 4.2) and same word plays same constituent
role in time expressions, therefore, the same word is assigned with
the same TOMN tag, regardless of its frequency and its positions
within time expressions. For example, TOMN scheme assigns the
above four time expressions as ‘September/T,’ ‘2006/T September/T,’
‘September/T 2006/T,’ and ‘1/N September/T 2006/T’ (see Figure
1(b)). The four ‘September’ have the same tag of ‘T’ and statistical
models need only to model them as ‘T,’ without any confusion.With
consistent tag assignment, TOMN scheme avoids the potential tag
imbalance and protects time tokens’ predictive power.

Besides, TOMN schememodels a word by fewer tags than BILOU
scheme does. BILOU scheme typically models a time token by four
tags (i.e., U, B, L, or I) and models a modifier/numeral by five tags
(i.e., U, B, L, I, or O), while TOMN scheme models a time token by
one tag (i.e., T) andmodels a modifier/numeral by two tags (i.e.,M or
N if the modifier/numeral appears inside time expressions and O if
it appears outside time expressions). Compared with BILOU scheme,
TOMN scheme reduces the complexity of the trained model.

4.2 TmnRegex
Property 2 indicates a small group of words that are used in time
expressions. TOMN uses three time-related token types, namely
time token, modifier, and numeral, to group those words. The three
token types are consistent with three of the above four tags (i.e., T,
M, and N), and are similar to the ones defined in SynTime [47].

Time tokens explicitly express information about time, such as
year (e.g., ‘2006’), month (e.g., ‘September’), date (e.g., ‘2006-09-
01’), and time units (e.g., ‘month’). Modifiers are the words that
modify time tokens and appear around them; for example, the two
modifiers ‘the’ and ‘last’ modify the time token ‘month’ in ‘the last
month.’ Numerals include ordinals and numbers, except those that
are recognized as year (e.g., ‘2006’). Token types are defined on
tokens themselves and are not necessarily relevant to their context.
For example, ‘2006’ alone expresses time information, so it is a time
token; although the ‘1’ in ‘1 September 2006’ implies the day, itself
alone does not express time information, so it is a numeral.

The three token types with the words they group form a set of
token regular expressions, and the set of token regular expressions
is denoted by TmnRegex. TmnRegex is constructed by importing
token regular expressions for its time token, modifier, and numeral
from SUTime.7 Like SynTime [47], TmnRegex collects from SUTime
only the regular expressions at the level of token. TmnRegex con-
tains only 115 distinct time tokens, 57 modifiers, and 58 numerals,
without counting the words with changing digits.

4.3 Time Expression Recognition
Time expression recognition mainly consists of two stages: (1) fea-
ture extraction and (2) model learning and tagging.When extracting
features we set a guideline that the features should be able to help
differentiate time expressions from common text and help build
connections among time expressions.
7https://github.com/stanfordnlp/CoreNLP/tree/master/src/edu/stanford/nlp/time/rules

4.3.1 Feature Extraction. The features we extract include two
kinds: TOMN pre-tag features and lemma features.When extracting
features we usewi to denote the i-th word in text.

TOMN Pre-tag Features. Finding 2 shows that time tokens can
differentiate time expressions from common text while modifiers
and numerals cannot, therefore, how to leverage the information of
these words becomes crucial. In our consideration, they are treated
as pre-tag features under TOMN scheme. Specifically, a time token
is pre-tagged by the tag of T, a modifier is pre-tagged by M, and a
numeral is by N; other common words are by O. The assignment of
pre-tags is conducted by simply looking up the words at TmnRegex.

The last four columns of Table 3 indicate that modifiers and
numerals constantly appear in time expressions and in common text.
To distinguish where a modifier or numeral appears, we conduct a
checking for the modifiers and numerals (the words with pre-tag of
M or N (M/N)) to record whether they directly or indirectly modify
any time token. ‘Indirectly’ here means a M/N together with other
M/N modifies a time token; for example, in ‘last two months,’ ‘last’
(M) together with ‘two’ (N) modifies ‘months’ (T). The checking is
a loop searching relying on the time tokens. For each time token
we search its left side without exceeding its previous time token
and search its right side without exceeding its following time token.
When searching a side of a time token, if encounter a M/N, then
record theM/N and continue searching; if encounter a word that is
not M/N, then stop the searching for this side of this time token.
After the checking, thoseM/N that modify time tokens are recorded;
for example, the ‘two’ in ‘two months’ is recorded while in ‘two
apples’ is not. The checking is treated as a feature for modeling.

For the pre-tag features we extract them in a 5-word window of
wi , namely the pre-tags ofwi−2,wi−1,wi ,wi+1, andwi+2. For the
checking feature we consider only the current wordwi .

In the training phase we consider the TOMN pre-tag features for
only the words within labeled time expressions. In the test phase
the TOMN pre-tag features are extracted for all the words in text.

Lemma Features. The lemma features include the word shape of
wi in a 5-word window, namely the lemmas ofwi−2,wi−1,wi ,wi+1,
andwi+2. Ifwi contains changing digit(s), then we set its lemma by
its token type. For example, the lemma of ‘20:16’ is set by TIME. We
use five special lemma for the words with changing digits: YEAR,
DATE, TIME, DECADE, and NUMERAL. The lemma features can
help build connections among time expressions; for example, the
two different words ‘20:16’ and ‘19:25:33’ are connected at TIME.

The lemma features are extracted for all the words in text in both
of the training phase and the test phase.

We do not consider the features of characters nor word variants
because they cannot help build connections among time expressions
but hurt the modeling; for example, ‘Sept.’ and ‘September’ express
the same thing but computer does not treat them as the same thing.

We also do not consider the POS features nor other syntactic
features. Property 3 indicates that POS tags cannot help differenti-
ate time expressions from common text, and experiments confirm
that POS tags do not improve the performance. On the other hand,
Finding 1 shows that time expressions are formed by loose struc-
ture, which together with Property 3 suggests that other syntactic
features (e.g., syntactic dependency) that rely on POS tags and
fixed linguistic structure cannot provide extra useful information
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Table 4: Features of wordwi used for modeling

1. TOMN pre-tags of wi in a 5-word window, namely the
pre-tags ofwi−2,wi−1,wi ,wi+1, andwi+2

2. Ifwi is aM orN, then check whether it directly or indirectly
modifies any time token

3. Lemmas ofwi in a 5-word window

On/O September/T 1/N ,/M 1939/T ,/O … state/O in/O 1939/T ./O

t t

(a) T, M, and N words together form a time expression.

For/O the/M first/N 10/N months/T of/M 1915/T ,/O Austria/O ...

t

(b) T, M, and N words together form a time expression.

... in/O a/M few/M days/T and/M weeks/T respectively/O ./O

t t

(c) Linker ‘and’ separates two time expressions.

We/O could/O do/O it/O in/O 95/N to/M 100/N days/T ./O

tt

(d) Linker ‘to’ separates two time expressions.

Figure 3: Examples of time expression extraction. The label
t indicates time expression.

for a CRFs-based learning method, which already considers the
dependency, to differentiate time expressions from common text.
We therefore do not use those syntactic features in our model.

Feature Values. For the TOMN pre-tag features we separate the
features with binary values. The theory of scales of measurement
suggests that non-ordinal attributes should be transformed to sepa-
rate dimensions [37]. TOMN pre-tags are non-ordinal, therefore,
each of TOMN pre-tags as well as the checking feature works as a
separate feature. For the lemma features we follow the traditional
use to incorporate multiple values under a feature.

Table 4 summarizes the features that are used for time expression
modeling. Typically up to 11 features are extracted for a word.

4.3.2 Model Learning and Tagging. TOMN models time expres-
sions through the feature vectors under a CRFs framework [19]. In
implementation, we use Stanford Tagger8 for the lemma features
and use CRFSuite9 with default setting for model learning. For the
tagging, each word is assigned with one of TOMN tags, namely T,O,
M, or N. Note that the TOMN scheme is used in feature extraction
as a kind of features and in sequence tagging as labeling tags.

Time Expression Extraction.After sequence tagging, those T,M,
and N words (or non-O words) that appear together are extracted
as a time expression. See Figure 3(a) and 3(b). A special kind of
modifiers, i.e., the linker ‘to,’ ‘-,’ ‘or,’ and ‘and’ separates the non-O
words into parallel time expressions. See Figure 3(c) and 3(d).
8http://nlp.stanford.edu/software/tagger.shtml
9http://www.chokkan.org/software/crfsuite/

5 EXPERIMENTS
We conduct experiments on three datasets, namely TE-3, WikiWars,
and Tweets, to evaluate TOMN against five state-of-the-art methods,
namely HeidelTime (with Colloquial setting for Tweets), SUTime,
SynTime, ClearTK-TimeML (short as ‘ClearTK’), and UWTime.

5.1 Experiment Setting

Datasets. The three datasets used in our experiments are TE-3,
WikiWars, and Tweets. TE-3 uses the TimeBank corpus as training
set and the Platinum corpus as test set. TimeBank consists of 183
news articles and Platinum consists of 20 new articles; they are
comprehensive corpora in formal text and described in TempEval-3
[42].WikiWars is a specific domain dataset in formal text, consisting
of 22 English Wikipedia articles about famous wars [27]. Tweets
is a comprehensive dataset in informal text, with 942 tweets that
contain time expressions [47]. For WikiWars and Tweets, we follow
previous works [21, 47] to set their training sets and test sets. The
performance of amethod (rule-based or learning-based) on a dataset
is reported on the dataset’s test set.

Baseline Methods.We evaluate TOMN against five state-of-the-
art methods, including three rule-based methods, HeidelTime, SU-
Time, and SynTime, and two learning-based methods, ClearTK
and UWTime. HeidelTime [39] and SUTime [9] use predefined
deterministic rules and achieve the best results in relaxed match
while ClearTK [4] uses a CRFs framework with BIO scheme and
achieves the best result in strict match in TempEval-3 [42]. UWTime
uses combinatory categorial grammar (CCG) to predefine linguistic
structure for time expressions and achieves better results than Hei-
delTime on TE-3 and WikiWars datasets [21]. SynTime uses a set
of general heuristic rules and achieves good results on TE-3, Wiki-
Wars, and Tweets datasets [47]. SynTime has two versions, a basic
version and an expanded version. Because the expanded version
requires extra manual annotation for each dataset, for fair com-
parison, we use the basic version to ensure that the token regular
expressions used in SynTime and TOMN are comparable.

Evaluation Metrics. We report the results in Precision, Recall ,
and F1 under strict match and relaxed match by using the evalua-
tion toolkit10 of TempEval-3 [42]. Strict match means exact match
between the extracted time expressions and the ground truth while
relaxed match means that there exists overlap between them.

5.2 Experiment Results
Table 5 reports the performance of TOMN and baseline methods.
Among the 18 measures, TOMN achieves 13 best or second best
results. It is better than SynTime which achieves 10 best or second
best results, and much better than other baselines which achieve
at most 4 best or second best results. For each measure, TOMN
achieves either best results or comparable results. Especially for the
F1, TOMN performs the best in strict F1 on Tweets and in relaxed
F1 on WikiWars; for other F1, TOMN performs comparably (most
are within 0.5% difference) to the corresponding best results.

5.2.1 TOMN vs. Baseline Methods. We further compare TOMN
with the rule-based methods and the learning-based methods.

10http://www.cs.rochester.edu/~naushad/tempeval3/tools.zip
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Table 5: Performance of TOMN and baseline methods. We
make bold the best results and underline the second best.
Some results are reported directly from the sources where
the results are publicly available.

Dataset Method Strict Match Relaxed Match
Pr . Re . F1 Pr . Re . F1

TE-3

HeidelTime[40] 83.85 78.99 81.34 93.08 87.68 90.30
SUTime[10] 78.72 80.43 79.57 89.36 91.30 90.32
SynTime[47] 91.43 92.75 92.09 94.29 95.65 94.96
ClearTK[4] 85.90 79.70 82.70 93.75 86.96 90.23
UWTime[21] 86.10 80.40 83.10 94.60 88.40 91.40

TOMN 92.59 90.58 91.58 95.56 93.48 94.51

WikiWars

HeidelTime[38] 88.20 78.50 83.10 95.80 85.40 90.30
SUTime 78.61 76.69 76.64 95.74 89.57 92.55

SynTime[47] 80.00 80.22 80.11 92.16 92.41 92.29
ClearTK 87.69 80.28 83.82 96.80 90.54 93.56

UWTime[21] 87.70 78.80 83.00 97.60 87.60 92.30
TOMN 84.57 80.48 82.47 96.23 92.35 94.25

Tweets

HeidelTime 91.67 74.26 82.05 96.88 78.48 86.71
SUTime 77.69 79.32 78.50 88.84 90.72 89.77

SynTime[47] 89.52 94.07 91.74 93.55 98.31 95.87
ClearTK 86.83 75.11 80.54 96.59 83.54 89.59
UWTime 88.36 70.76 78.59 97.88 78.39 87.06
TOMN 90.69 94.51 92.56 93.52 97.47 95.45

TOMN vs. Rule-based Baselines. On TE-3 and Tweets, TOMN
achieves comparable results with SynTime. On WikiWars, TOMN
achieves the F1 with 2.0% to 2.3% absolute increase over SynTime.
This indicates that compared with SynTime, TOMN is equally effec-
tive on comprehensive data and more effective on specific domain
data. The reason is that the heuristic rules of SynTime are greedy
for recalls at the cost of precisions, and the cost is expensive when
it comes to specific domain data. TOMN instead leverages statis-
tical information from entire corpus, which may miss the rare
time expressions but helps recognize time expressions more pre-
cisely; especially in specific domain data, the statistical information
significantly improves the precisions at little cost of recalls. For
HeidelTime and SUTime, except the strict F1 on WikiWars, TOMN
outperforms them on all the datasets, with up to 15.3% absolute
increase in recalls and up to 12.0% absolute increase in F1. The
reason is that the deterministic rules of HeidelTime and SUTime
are designed in fixed manner, which lacks flexibility [47].

TOMN vs. Learning-based Baselines. Except the strict F1 on
WikiWars, TOMN outperforms ClearTK and UWTime on all three
datasets in all the recalls and F1. Especially on TE-3 and Tweets
datasets, TOMN improves the recalls by at least 9.8% in strict match
and at least 5.1% in relaxed match, and improves the F1 by at least
8.5% in strict match and at least 3.1% in relaxed match. The reasons
are that the fixed linguistic structure predefined in UWTime cannot
fully capture the loose structure of time expressions, the BIO scheme
used in ClearTK reduces the predictive power of time tokens, and
some of their features (e.g., syntactic dependency) actually hurt the
modeling. For the strict F1 on WikiWars, TOMN performs slightly
worse than the two learning-based methods because like SynTime,
TOMN follows TimeBank and SynTime to exclude the prepositions
(except ‘of’) from time expressions while some time expressions in
WikiWars include these prepositions.

Table 6: Cross-dataset performance on the test set of TE-3.
‘Training’ indicates the dataset whose training set is used for
training. Color background indicates single-dataset results.

Training Method Strict Match Relaxed Match
Pr . Re . F1 Pr . Re . F1

ClearTK 85.90 79.70 82.70 93.75 86.96 90.23
UWTime 86.10 80.40 83.10 94.60 88.40 91.40TE-3
TOMN 92.59 90.58 91.58 95.56 93.48 94.51

WikiWars
ClearTK 65.67 63.77 64.71 87.31 84.78 86.03
UWTime 76.92 72.46 74.63 88.46 83.33 85.82
TOMN 84.06 84.06 84.06 93.48 93.48 93.48

Tweets
ClearTK 72.59 71.01 71.79 93.33 91.30 92.31
UWTime 80.00 72.46 76.05 92.80 84.06 88.21
TOMN 85.42 89.13 87.23 91.67 95.65 93.62

Table 7: Cross-dataset performance on test set of WikiWars

Training Method Strict Match Relaxed Match
Pr . Re . F1 Pr . Re . F1

TE-3
ClearTK 74.38 60.76 66.89 97.54 79.68 87.71
UWTime 87.01 79.34 83.00 96.07 87.60 91.64
TOMN 82.18 75.65 79.07 96.26 87.93 91.90
ClearTK 87.69 80.28 83.82 96.80 90.54 93.56
UWTime 87.70 78.80 83.00 97.60 87.60 92.30WikiWars
TOMN 84.57 80.48 82.47 96.23 92.35 94.25

Tweets
ClearTK 57.75 54.73 56.20 91.93 87.12 89.46
UWTime 80.28 62.81 70.48 94.37 73.83 82.84
TOMN 60.29 66.00 63.02 84.74 92.76 88.57

Table 8: Cross-dataset performance on the test set of Tweets

Training Method Strict Match Relaxed Match
Pr . Re . F1 Pr . Re . F1

TE-3
ClearTK 81.16 47.26 59.73 97.10 56.54 71.47
UWTime 89.66 65.82 75.91 94.83 69.62 80.29
TOMN 92.92 88.61 90.71 96.90 92.41 94.60

WikiWars
ClearTK 72.48 45.57 55.96 95.30 59.92 73.58
UWTime 87.43 61.60 72.28 95.81 67.61 79.21
TOMN 85.00 86.08 85.53 93.75 94.94 94.34
ClearTK 86.83 75.11 80.54 96.59 83.54 89.59
UWTime 88.36 70.76 78.59 97.88 78.39 87.06Tweets
TOMN 90.69 94.51 92.56 93.52 97.47 95.45

5.2.2 Cross-dataset Performance. We conduct cross-dataset ex-
periments and compare TOMN with the learning-based methods
that require training. Specifically, amethod is trained on the training
set of one dataset and then tested on the test sets of other datasets.
Since the three datasets used in our experiments are quite diverse,
the cross-dataset experiments on the three datasets therefore can
evaluate a learning method’s robustness. Table 6 reports the cross-
dataset performance on TE-3; Table 7 reports the performance on
WikiWars; and Table 8 on Tweets. For comparison, Table 6, 7, and 8
also report the performance on single-dataset; ‘single-dataset’ here
means the training set and the test set belong to the same dataset.
The single-dataset results are reported directly from Table 5.

On (the test set of) TE-3, TOMN achieves at least 84.0% in strict
F1 and at least 93.4% in relaxed F1. (See the rows of WikiWars
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and Tweets in Table 6.) On Tweets, TOMN achieves at least 85.5%
and 94.3% respectively. (See the rows of TE-3 and WikiWars in
Table 8.) It significantly outperforms ClearTK and UWTime. On
WikiWars, TOMN achieves comparable results with ClearTK and
UWTime in relaxed match but performs worse than UWTime in
strict match; especially when trained on Tweets, TOMN achieve
only 63.0% in strict F1, 7.5% lower than the one of UWTime. (See
the rows of TE-3 and Tweets in Table 7.) Tweets contains many
short time expressions (62.9% one-word time expressions) and uses
fewer modifiers and numerals in time expressions while WikiWars
includes quite a few long time expressions (only 36.2% one-word
time expressions) and some descriptive time expressions. For these
reasons, TOMN trained on Tweets cannot fully recognize the long
and descriptive time expressions in WikiWars. UWTime instead
predefines linguistic structure, which contributes significantly to
exact recognition of those long and descriptive time expressions.

Look at the single-dataset and cross-dataset performance in
relaxed match. TOMN achieves similar performance, regardless
of which dataset it is trained on; in relaxed F1, TOMN achieves
about 93.9% on TE-3, about 91.6% on WikiWars, and about 94.8% on
Tweets. By contrast, ClearTK and UWTime perform well on single-
dataset but much worse on cross-dataset; especially on Tweets,
their relaxed F1 drops from at least 87.0% when trained on Tweets
to at most 80.3% when trained on other datasets. This indicates that
TOMN is much more robust than ClearTK and UWTime.

The robustness of TOMN can be explained by Finding 2 and
Property 2. Finding 2 indicates that time tokens are capable of pre-
dicting time expressions and Property 2 indicates that time expres-
sions highly overlap at their time tokens within individual dataset
and across different datasets. That means, the time tokens from
one dataset can help recognize the time tokens from other datasets.
Therefore, in terms of relaxed match, the cross-dataset performance
should be comparable to the single-dataset performance.

5.2.3 Factor Analysis. We conduct experiments to analyze the
impact of the TOMN scheme as labeling tags and the features used
in TOMN. The results are reported in Table 9.

Impact of TOMN Labeling Tags. To analyze the impact of the
TOMN scheme as labeling tags, we keep all the features unchanged
except change the labeling tags from TOMN scheme to BIO scheme
to get a BIO system and to BILOU scheme to get a BILOU system.
The BIO and BILOU systems use the same TOMN pre-tag features
and lemma features that are used in TOMN.11

The tag assignment of BIO and BILOU schemes during feature
extraction in the training stage follows their traditional use; for
example, a unit-word time expression is assigned with B under BIO
scheme while it is assigned with U under BILOU scheme. When
extracting time expressions from tagged sequence in the test stage,
we adopt two strategies. One strategy follows their traditional use
in which time expressions are extracted according to the tags of
words; for example, a Uword under BILOU scheme is extracted as a
time expression. The other strategy follows the one used for TOMN
in which the non-O words that appear together are extracted as a
time expression. The traditional strategy is denoted by ‘trad’ while

11The BIO and BILOU schemes can be extracted with other features, but we using the BIO and
BILOU schemes here is to conduct controlled experiments to analyze the impact of TOMN scheme
as labeling tags. So we extract the same features in TOMN to the BIO and BILOU schemes.

Table 9: Impact of factors. ‘BIO’ denotes the systems that re-
place TOMN labeling tags by BIO tags while ‘BILOU’ denotes
the systems that replace by BILOU tags. ‘trad’ indicates the
traditional strategy for extraction while ‘nono’ indicates the
non-O strategy. ‘−’ indicates the kind of features removed
from TOMN; ‘PreTag’ denotes the TOMN pre-tag features
and ‘Lemma’ denotes the lemma features.

Dataset Method Strict Match Relaxed Match
Pr . Re . F1 Pr . Re . F1

TE-3

TOMN 92.59 90.58 91.58 95.56 93.48 94.51
BIOtrad 83.06 74.64 78.63 94.35 84.78 89.31
BIOnono 84.68 76.09 80.15 94.35 84.78 89.31

BILOUtrad 84.75 72.46 78.12 94.92 81.16 87.50
BILOUnono 86.44 73.91 79.69 94.92 81.16 87.50
−PreTag 89.36 60.87 72.41 95.74 65.22 77.59
−Lemma 81.56 83.33 82.44 92.20 94.20 93.19

WikiWars

TOMN 84.57 80.48 82.47 96.23 92.35 94.25
BIOtrad 77.75 71.03 74.24 93.39 85.31 89.17
BIOnono 77.75 71.03 74.24 93.39 85.31 89.17

BILOUtrad 79.56 72.03 75.61 93.56 84.71 88.91
BILOUnono 79.78 72.23 75.82 93.56 84.71 88.91
−PreTag 87.22 70.02 77.68 99.25 79.68 88.39
−Lemma 74.80 75.25 75.03 92.20 92.56 92.28

Tweets

TOMN 90.69 94.51 92.56 93.52 97.47 95.45
BIOtrad 89.16 93.67 91.36 92.37 97.05 94.65
BIOnono 90.24 93.67 91.93 93.50 97.05 95.24

BILOUtrad 89.37 95.78 92.46 92.13 98.73 95.32
BILOUnono 90.65 94.09 92.34 93.50 97.06 95.24
−PreTag 92.41 61.60 73.92 98.10 65.40 78.48
−Lemma 90.69 94.51 92.56 93.52 97.47 95.45

the non-O strategy is by ‘nono.’ The results of the BIO and BILOU
systems are reported as ‘BIO’ and ‘BILOU’ in Table 9. We can see
that the non-O strategy performs almost the same as the traditional
strategy, and the BIO systems achieve comparable or slightly better
results compared with the BILOU systems. The reason is that time
expressions on average contain about two words (see Property 1); in
that case, BILOU scheme is reduced approximately to BLOU scheme
and BIO scheme is changed approximately to BLO scheme. Between
BLOU scheme and BLO scheme there is only slight difference; and
under the impact of inconsistent tag assignment and TOMN pre-tag
features, this slight difference affects slightly to the performance.
Following we do not distinguish BILOU scheme from BIO scheme
and do not distinguish non-O strategy from traditional strategy; the
four methods of BIOtrad , BIOnono , BILOUtrad , and BILOUnono
are simply represented by ‘BILOU.’

On TE-3 andWikiWars, TOMN significantly outperforms BILOU.
TOMN achieves the recalls that are 7.0% to 14.5% absolute higher
than those of BILOU and achieves the F1 that are 5.0% to 11.4%
absolute higher than those of BILOU. The reason is that the loose
collocations and exchangeable order in time expressions lead BILOU
scheme to suffer from the problem of inconsistent tag assignment;
TOMN scheme instead overcomes that problem.

On Tweets, TOMN and BILOU achieve similar performance; the
difference between their performance ranges within 1% in most
measures. The reason is that 62.9% of time expressions in Tweets are
one-word time expressions and 96.0% of time expressions contain
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Table 10: Running time that TOMN and the learning-based
methods cost to go through a whole process (unit: seconds)

Method TE-3 WikiWars Tweets
ClearTK 152 223 86
UWTime 864 1,050 160
TOMN 36 48 42

time tokens (see Property 1); which means the one-word time ex-
pressions contain only the time tokens. In that case, TOMN scheme
is reduced approximately to TO scheme and BILOU scheme is re-
duced approximately to UO scheme. Then UO scheme becomes a
constituent-based tagging scheme in which U indicates the time
token. It is equivalent to TO scheme. (BIO scheme is reduced approx-
imately to BO scheme in which B indicates the time token. Then
BO scheme is equivalent to TO scheme as well as UO scheme.)

Impact of TOMN Pre-tag Features. To analyze the impact of
TOMN pre-tag features, we remove them from TOMN. After they
are removed, although most of the precisions increase and even
reach highest scores, all the recalls and F1 drop dramatically, with
absolute decreases of 10.4% to 32.9% in recall and 4.8% to 19.1% in
F1. That means TOMN pre-tag features significantly improve the
performance and confirms the predictive power of time tokens. The
results also validate that pre-tag is a good way to use those lexicon.

Impact of Lemma Features. When lemma features are removed,
the performance in relaxed match on all the datasets is affected
slightly. The reason is that the TOMN pre-tag features provide
useful information to recognize time tokens. The strict match on
TE-3 and WikiWars decreases dramatically, which indicates that
the lemma features heavily affect the recognition of modifiers and
numerals. The strict match on Tweets is affected little because
tweets tend not to use modifiers and numerals in time expressions.

5.2.4 Computational Efficiency. HeidelTime and SUTime run
nearly in real time; SynTime in real time. Table 10 reports the
running time that TOMN and the learning-based methods cost to
go through awhole process (including training and test) on the three
datasets on a Mac OS laptop (1.4GHz Processor and 8GB Memory).
We can see that TOMN is much more efficient than ClearTK and
UWTime. Consider only the test, TOMN runs in real time.

6 DISCUSSION
The analysis of time expressions can explain a lot of empirical obser-
vations reported in other works about time expression recognition.
UzZaman et al. report that using an extra large dataset does not im-
prove the performance [42]; Bethard reports that using TimeBank
alone performs better than using TimeBank and AQUAINT datasets
together [4]; and Filannino et al. report that features of gazetteers,
shallow parsing, and propositional noun phrases do not contribute
significant improvement [15]. These observations can be explained
by the findings and properties illustrated in Section 3. Finding 1, 2
and Property 2, 3 together suggest that additional gazetteers, large
corpus, and more datasets provide no further useful information
but repeated time tokens and their loose combinations, and that
those syntactic features cannot provide extra useful information
for a CRFs-based learning method to model time expressions.

The analysis of tagging schemes can explain the empirical ob-
servations reported in other works about the impact of the BIO (or
IOB2) and BILOU (or IOBES) schemes in named entity recognition
(NER). Ratinov and Roth report that BILOU scheme outperforms
BIO scheme on MUC-7 and CoNLL03 NER datasets [33]; Dai et al.
report that IOBES scheme performs better than IOB2 scheme in
drug name recognition [13]. When looking at their results, however,
we find that the improvements are rather slight, most of them are
within 1%; and in some cases, BIO scheme performs better than
BILOU scheme. Lample et al. confirm that they do not observe
significant improvement of IOBES scheme over IOB2 scheme on
CoNLL03 NER dataset [20]. These observations can be explained by
our analysis of tagging schemes in Section 4.1 and 5.2.3. Basically,
BIO and BILOU schemes are based on the position within the chunk
and implicitly assume that target entities should be formed by fixed
structure and even fixed collocations. But entities as part of lan-
guage are actually flexible. When applied to entity recognition, the
BIO and BILOU schemes would more or less suffer from the prob-
lem of inconsistent tag assignment. We analyze the named entities
in CoNLL03 (English NER) dataset [34] as an example. We find that
for each of the CoNLL03 training, development, and test sets, more
than 53.7% of distinct words appear in different positions within
named entities; more than 93.7% of named entities each has at least
one word not appearing in common text; and the named entities on
average contain 1.45 words, with 63.2% one-word named entities.
The percentage 53.7% is similar to the one of distinct time tokens
in time expressions (53.5%; see Finding 1); the 93.7% is similar to
the one of time expressions that contain time tokens (91.8%; see
Finding 2); and the length distribution is similar to the one of time
expressions in Tweets (see Property 1). That means named entities
demonstrate common characteristics similar to time expressions.
When modeling named entities, like modeling time expressions, the
BIO and BILOU schemes would either suffer from the problem of
inconsistent tag assignment or be roughly equivalent if they were
reduced to the constituent-based BO and UO schemes. In either
case, the difference between the two schemes impacts slightly.

When analyzing the CoNLL03 dataset (which contains four entity
types: PER, LOC,ORG, andMISC), we find that some named entities
are annotated with different entity types. In the training set, for
example, ‘Wimbledon’ is annotated 4 times with LOC, 8 times with
ORG, and 18 times with MISC. Such named entities (including
several polysemy) in the training set, development set, and test
set reach relatively high percentage of respective 6.9%, 4.4%, and
6.5%. The inconsistent annotation and inconsistent tag assignment
may be able to explain why most state-of-the-art NER methods
achieve the F1 at around 94.5% on the development set and around
91.5% on the test set [12, 20, 24, 25, 29, 33, 46], and why more than
10 years’ effort improves the F1 by only 0.8% on the development
set (from 2003’s 93.9% [16] to current 94.7% [25]) and by only 2.9%
on the test set (from 2003’s 88.7% [16] to current 91.6% [12]). The
two inconsistency problems seem to limit the upper bound of the
performance on development set at near 94.5% and the one on
test set at near 91.5%. This suggests that to further improve the
performance on current CoNLL03 dataset with current methods is
difficult and unreliable. Instead of continuing to fine-tune current
methods, we should try to correct the inconsistent annotation and
address the problem of inconsistent tag assignment.
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