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Abstract—Transformer-based Large Language Models (LLMs)
are widely used as foundational models for sentiment analy-
sis. However, they have long been criticized for their lack of
explainability and transparency. Most existing research focuses
on interpreting the salience of input tokens with regard to the
model prediction, while the inner workings of LLMs in sentiment
analysis remain under-explored. In this work, we attempt to
explore the hidden states of Transformer-based LLMs in relation
to the sentiment conveyed by input texts. Specifically, we analyze
the hidden states outputted by each layer as well as each head
in a RoBERTa model finetuned for sentiment analysis, so as to
examine the sentiment-related knowledge embedded in them. To
achieve this, we apply three different clustering algorithms to
probe whether each layer or head encodes sufficient knowledge
to distinguish sentiment. Our experiments reveal that text length
and frequency affect the tokens of hidden layers, and that not all
heads within a layer contribute to the final result, indicating re-
dundancy in parts of the model’s internal structure. Additionally,
we conduct a part-of-speech analysis, which suggests that hidden
states contain information about part-of-speech tags. We further
explore the internal mechanism in RoBERTa by performing
experiments on word sense disambiguation and entailment.

Index Terms—sentiment analysis, large language models, se-
mantics, pragmatics.

I. INTRODUCTION

Large Language Models (LLMs) have significantly im-
pacted the research community from different aspects [1]. Re-
searchers begin to focus on the state-of-the-art performance of
large models in language tasks, the bias and fairness of models
in learning and generating words [2], [3], and the efficiency
of new architectures of models. Extensive knowledge has
been embedded in the parameters of LLMs via pre-training.
These parameters together build up LLMs’ knowledge base
for handling various tasks.

However, the embedded information has not been systemati-
cally examined in the context of sentiment analysis. Sentiment
analysis typically focuses on improving the performance of
models in recognizing sentiments and other sentiment-related
tasks [4], with limited exploration of internal mechanisms
behind these processes. In this work, we analyzed the hidden
states of LLMs in the aspect of sentiments. We used clustering
algorithms to isolate relevant information from the hidden
states to uncover pattern changes within layers in the model.
The targeted information includes typical sentiments of normal
texts, texts containing frequently used words, and part-of-
speech tag information for each word in texts.

Additionally, we conducted two other experiments, text
entailment, and word sense disambiguation, to determine
whether the hidden states of the model exhibit patterns similar
to those found in the sentiment experiment. In this work, we
used clustering methods to process raw hidden states and find
pattern changes related to learning sentiments and part-of-
speech tags. We found that there exists redundancy within
hidden states when the model learns sentiment information
from different texts; part of speech tag information could be
learned by hidden states. Through experiments on text entail-
ment and word sense disambiguation, we explored potential
reasons behind the model’s failures and tried to provide a
general explanation of the internal mechanisms.

The contribution of this work can be summarized as follows:
(1) The study investigates the hidden states of a Transformer-
based pre-trained language model, RoBERTa, to understand
how sentiment-related knowledge is encoded across different
layers and heads. This provides insights into the internal
mechanisms of language models in the context of sentiment
analysis. (2) The findings reveal that there is redundancy
within the hidden states when the model learns sentiment
information, indicating that not all heads within a layer con-
tribute equally to the final output. This suggests potential areas
for optimization in model architecture.

II. RELATED WORK

A. Sentiment Analysis

Sentiment analysis aims to classify the emotions and atti-
tudes conveyed from people’s words at different levels [5], [6].
In most cases, it is concerned with measuring the polarity of
language expressions. Sentiment analysis itself can be catego-
rized into four levels: word level, sentence level, document
level, and featured-based level [7]. Each level has its own
specific requirements, leading to different methodologies and
research approaches. Researchers also focus on key features
such as syntax, words, frequencies and negation, etc. [8]–[11].
There is research that analyzes sentiment and opinionated text
from a cognitive perspective [12]–[14]. All of these reflect that
sentiment analysis is a complex field of study.

In recent years, the emergence of Transformer-based lan-
guage models has inspired extensive research into sentiment
analysis. For instance, there are studies that explore the
models’ ability to handle ambiguous, ironic, or metaphorical
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texts for sentiment analysis [15]–[19]. Other studies propose
new cross-lingual approaches to enhance model performance
in sentiment analysis [20], [21]. New model architectures
for specializing in tasks are also important to the research
community [22]. Miah et al. [23] proposed new models for
sentiment analysis in new languages that lack enough senti-
ment datasets. Sun et al. [24] studied the model’s inductive
capabilities, and explored a new architecture to optimize the
decision-making process for sentiment analysis. There are
also studies that focused on enhancing the foundation models
with sentiment knowledge bases [25]–[27] and employing
sentiment analysis on a wide range of downstream tasks [28]–
[30] and modalities [31]–[33].

LLMs have also been implemented in various fields and
applications. This becomes important in service industries such
as finance and healthcare. For instance, Xing [34] applied
LLM without fine-tuning to enhance performance in sentiment
analysis on finance. Du et al. [35] analyzed the limitation of
LLMs in financial sentiment analysis tasks. In the healthcare
field, there are many works using LLMs to study health data. A
study addressed the problem of low accuracy in sentiment tools
on medical data [36]; another study investigates the application
of LLMs on health-related social platform [37].

The works mentioned above aim to address gaps in sen-
timent analysis work in different fields to improve model
performance. However, they do not explore the internal mech-
anism of LLMs when predicting sentiment labels. The internal
mechanism of models is called a black box as it is isolated
from the outside environment. Studying and interpreting hid-
den workings is beneficial for understanding the architecture
of models and the role of components, which is critical for
developing accountable AI systems [38], [39]. In this paper,
we analyze the hidden states of LLMs to uncover patterns
within the layers and heads of the model.

B. Clustering

In this work, we utilize the following three clustering
algorithms:
K-Means. MacQueen first used the term K-means for a
method to solve the problem of partitioning N -dimensional
population into k sets under some conditions [40]. Stuart Lloyd
first proposed a standard algorithm of K-means [41]. The basic
algorithm of this method is to assign data points of populations
to the nearest cluster centroid and then update the centroids
until they stabilize. The pseudocode is shown in Algorithm 1.

Algorithm 1: K-Means Algorithm
Input: Data points X and number of clusters k
Result: Number of clusters with assignments
Initialization: choose cluster centers randomly;
while centers have not converged do

Assign each point xi to the nearest center;
Update each center ck to be the mean points of
each cluster;

end

Spectral Clustering. The spectral clustering method has de-
veloped for a long time, building on concepts of graph theory
and the Laplacian Matrix. Shi and Malik [42] popularized
spectral clustering methods in the machine learning area.
The algorithm steps they proposed can be simplified as in
Algorithm 2 for general spectral clustering:

Algorithm 2: Spectral Clustering
Input: Data points X , number of clusters k
Result: Number of clusters with assignments
Construct similarity matrix W
Compute the Laplacian matrix L
Compute the first k eigenvectors of L
Form matrix U from the eigenvectors
Apply k-means clustering to U

Hierarchical Clustering. Danish botanist Sørensen first pro-
posed an algorithm using hierarchical relationships to cluster
data [43]. Hierarchical clustering has developed for a long
time. Now there are two ways to construct clusters: agglomer-
ative and divisive. The former builds clusters from the bottom
up, starting with individual data points and progressively
merging them into larger clusters. The latter begins with the
entire dataset as a single cluster and iteratively splits it into
smaller clusters. In this paper, we used the agglomerative
approach for hierarchical clustering. The algorithm is shown
in Algorithm 3:

Algorithm 3: Agglomerative Clustering

Input: Data points X , number of clusters k;
Result: Number of clusters with assignments
Initialization: each data point is a single cluster;
while number of clusters > k do

Find the two closest clusters based on a distance
metric;

Merge these two closest clusters;
end

III. EXPERIMENT

A. Datasets

We conducted our experiments using the following four
datasets.

1) Sentiment140 [44] consists of 1.6M tweets with positive,
negative, and neutral sentiment labels. Due to the dataset
containing only 138 neutral samples, we exclude them
to maintain data balance. To conduct our evaluation, we
sorted the entire dataset by text length and extracted the
15,000 shortest and 15,000 longest texts.

2) The IMDB-sentiment-reviews dataset [45] contains 50k
movie reviews labeled with positive and negative senti-
ments. We used the entire dataset for our experiment.

3) The Auditor Sentiment dataset [46] consists of 3.88k
sentences from financial news, classified in positive,
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negative, and neutral sentiment labels. We also remove
the neutral labels and use the remaining data for cross-
domain experiments in part of speech. For our analysis,
we extract between 10000 to 20000 of the shortest and
longest texts.

4) The SemCor dataset [47] contains about 20.1k texts with
part-of-speech tags and word definitions. We use this
dataset for part-of-speech and word sense disambigua-
tion analysis, extracting between 10000 to 20000 texts
for the experiment.

5) The SNLI dataset [48] contains about 570k texts consist-
ing of premises, hypothesis and labels. There are three
labels, entailment, contradiction, and neutral. We use this
dataset for the entailment experiment, extracting 30000
texts from it.

B. Implementation Details

In our work, we use the RoBERTa-base model [49], which
has been fine-tuned on the training set of the Sentiment140
dataset. The hyperparameters for training the model are as
follows: the learning rate is 1e−05; the train batch size
is 16; the eval batch size is 8; the seed is 42; the optimizer
is Adam with betas = (0.9, 0.999) and epsilon = 1e−08; the
lr scheduler type is linear; num epochs is 5. The model
achieves an accuracy of 89.33% on Sentiment140 datasets
classification.

After feeding the data into the model, we extract hidden
states from each hidden layer for further clustering and ac-
curacy testing. As mentioned before, we use three clustering
algorithms: K-means, Spectral, and Hierarchical clustering,
with the following settings:

• For all clustering methods, the number of clusters
n clusters is set to 2;

• For Spectral clustering, choices for constructing affinity
matrix, affinity, is set to "nearest_neighbors";
and the number of neighbors n neighbors set to 1,000;

• For Hierarchical clustering, we use the linkage package
to calculate the matrix. The linkage method is set to
"single", and the distance calculating method metric
is set to "euclidean".

For visualizing the results, we use the tSNE method to
process the hidden states and then apply the predicted labels
from the clustering methods for classification visualization.
The tSNE hyperparameters are set as follows: the dimension of
embedded space, n components, is set to 2, and the number
of neighbors, perplexity is set to 6.

For the part-of-speech analysis (Section IV-D), after feeding
the data into the model, we identify the tokens in the hidden
states corresponding to the words in the original text, and
then perform clustering on them based on part-of-speech tags.
We calculate the accuracy of the predicted labels against the
ground-true labels, and obtain the F1 scores for each tag
as well as the total weighted F1 score for each layer. In
the clustering algorithm, the n clusters is set to the total
number of possible tags provided by the dataset or by function
word tokenize from the NLTK package. We did truncation on

texts which have only exceeded 256 tokens in sequence. Given
the varying distributions of tags in the texts, we processed
distributions of tokens extracted from the hidden states to
ensure that different tags are evenly distributed for clustering.

In the entailment experiment (Section IV-E), we pair two
sentences as a tuple and feed them into the model to obtain
the hidden states of output. We then do K-means clustering on
these hidden states to see if the algorithm can correctly predict
a label for each tuple. The possible labels are entailment,
contradiction, and neutral. We did truncation on texts which
have exceeded 128 tokens in sequence.

In the word sense disambiguation experiment (Sec-
tion IV-E), we input each sentence into the model and collect
the tokens in the hidden states that correspond to the target
word. Then, we run K-means clustering on these tokens. The
number of labels is the total number of definitions of the target
word. We did truncation on texts which have exceeded 512
tokens in sequence.

IV. RESULTS

The sentiment analysis experiment (Table V) reveals that
the last hidden layer consistently performs best, achieving an
accuracy of around 80% under all conditions. Most other lay-
ers achieve the accuracy of about 50% (Table I and Table II).
However, Layers 10 and 11 (Table III and Table IV) show
improved performance on some datasets, reaching the accuracy
between 60% and 70%, closing to 80%. Also, we find that the
accuracy of some heads in layer 11 on short texts is averaged
as 50%, while other heads maintain an accuracy of 78%
(Table VI). Additionally, the model’s performance improves
across more layers when processing more frequent texts. The
part-of-speech analysis experiment confirms that the hidden
layers of the model have indeed learned underlying patterns
from words. Part of the tags in the data exhibit different
changing trends.

TABLE I
PERFORMANCE OF LAYERS 1 TO 9 ON SHORT TEXT.

Layer # K-means Spectral Hierarchical
Layer1 54.38% 54.15% 54.2%
Layer2 54.43% 54.11% 54.15%
Layer3 54.44% 54.17% 54.19%
Layer4 54.57% 54.18% 54.17%
Layer5 54.76% 54.19% 54.32%
Layer6 54.75% 54.26% 54.33%
Layer7 50.19% 54.07% 54.65%
Layer8 50.16% 54.13% 54.88%
Layer9 50.16% 54.29% 54.79%

A. Visualization

Fig 3 shows the visualization of the best-performing hidden
layer. The first row refers to short texts while the second row
refers to long texts. It is obvious that all three algorithms can
classify the entire dataset as expected. The last layer of hidden
states exhibits the best performance. Fig 1 and Fig 2 show that
hidden layers 10 and 11 have increasing accuracy, exceeding
50% in short texts, but reaching around 50% in long texts.
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TABLE II
PERFORMANCE OF LAYERS 1 TO 9 ON LONG TEXT.

Layer # K-means Spectral Hierarchical
Layer1 53.43% 54.21% 55.98%
Layer2 53.47% 50.5% 56.2%
Layer3 53.9% 53.86% 56.46%
Layer4 54.04% 53.98% 56.58%
Layer5 54.13% 54.14% 56.17%
Layer6 54.23% 54.19% 52.85%
Layer7 54.21% 54.16% 56.16%
Layer8 52.61% 54.23% 55.43%
Layer9 52.34% 54.11% 54.97%

TABLE III
PERFORMANCE OF LAYER 10.

Clustering Methods Short Text Long Text
K-means 76.47% 54.11%
Spectral 61.11% 54.02%
Hierarchical 72% 70.8%

TABLE IV
PERFORMANCE OF LAYER 11.

Clustering Methods Short Text Long Text
K-means 78.94% 54.13%
Spectral 79.96% 54.11%
Hierarchical 77.33% 75.85%

TABLE V
PERFORMANCE OF LAYER 12.

Clustering Methods Short Text Long Text
K-means 80.52% 81.55%
Spectral 80.13% 81.46%
Hierarchical 79.1% 81.08%

TABLE VI
PERFORMANCE OF THE HEADS IN LAYER 11.

Head # K-means Spectral Hierarchical
Head1 79.84% 79.53% 78.98%
Head2 79.85% 79.63% 79.82%
Head3 78.73% 78.86% 78.29%
Head4 54.05% 54.11% 54.1%
Head5 50.33% 50.31% 50.31%
Head6 53.55% 53.5% 53.5%
Head7 77.27% 56.31% 76.86%
Head8 78.35% 78.08% 78.09%
Head9 78.69% 78.57% 77.39%
Head10 78.83% 78.71% 78.63%
Head11 78.81% 78.71% 77.01%
Head12 78.81% 78.71% 78.59%

We observe that the datasets influence the internal workings
of the pre-trained language model. Beyond text length, other
factors also affect performance of layers. To uncover these
hidden factors, we make frequency-based analysis below.

B. Frequency-based Analysis

We count the occurrences of each word in the texts. For
each text, we calculate the total number of occurrences of
each word and divide it by the text length to obtain the average
frequency. Then, we sort all texts based on this frequency and
divide them into low-frequency and high-frequency groups.

Fig. 1. Layer 10 on Sentiment140 sentiments classification.

Fig. 2. Layer 11 on Sentiment140 sentiments classification.

Fig. 3. Layer 12 on Sentiment140 sentiments classification.

We then inputted each group into the trained model, applied
clustering algorithms to the model’s hidden layers, and visual-
ized the results to find the relationship between frequency and
clustering accuracy. From Fig 4, it can be found that there
is a spike in the low-frequency group (blue lines) starting
at layer 9, where accuracy suddenly increases from 53.34%
to 81.82%. In contrast, the high-frequency group (red lines)
shows a gradual upward trend beginning at Layer 7.

524



Fig. 4. Clustering results of high and low frequency of input text; (a) refers to Kmeans; (b) refers to Spectral; (c) refers to Hierarchical.

Given that high-frequency words are more prevalent in
the datasets than low-frequency words, it can be reasonably
inferred that the hidden layers are more influenced by these
common words. This inference explains the difference in
accuracy between the hidden layers for long tweets compared
to short tweets. Unlike short tweets dataset, long tweets
dataset have fewer common sentences for model to learn
and memorize. This is why higher accuracy was observed in
Layers 10 and 11 across the three algorithms.

C. Head Analysis

Since all heads of the last hidden layer perform well, we
also want to see whether this holds true for heads of other
layers which show good results. We selected Layer 11 for short
texts, as it achieves an accuracy of 78.94% with K-means,
79.96% with Spectral clustering and 77.33% with Hierarchical
clustering. We extract heads of hidden layer 11 and calculate
accuracy using three clustering algorithms. Most heads follow
the pattern where single head performs as well as the entire
layer. However, a few heads, including head 4, head 5 and
head 6, only achieve around 50% accuracy. It is reasonable to
infer that there exists redundancy in some layers that do not
require all heads working on information [50].

D. Part of Speech Analysis

Through the head analysis in Section IV-C, we observe
that the information within the tokens of each head is rel-
atively obscure, making it difficult to identify a clear path
for exploration. Also, the mechanism of interaction between
different heads further complicates the token information,
leading to disorder when grouping or extracting tokens. In
order to discover more patterns, we shifted our focus from
the hidden states themselves to the relationship between the
input texts and the hidden states. We designed a part-of-speech
experiment to explore the role of part-of-speech patterns in
model’s internal processing.

In this experiment, we used the dataset SemCor [47], which
labels each word in an input sentence with part-of-speech tags.
After feeding the text into the model, we obtain the hidden
states. We then extract corresponding tokens from hidden
states, and perform clustering algorithms on them to determine
if the model has indeed learned the patterns of different part-
of-speech tags in a sentence.

In this experiment, we used datasets from different domains
and used function from NLTK package to perform part-of-
speech tagging for each word in a sentence. We first choose a
target word which contains different tags in the dataset. After
feeding all texts containing target word into the model, we
obtained the hidden states. Then we extracted the correspond-
ing tokens for target word and applied clustering algorithms
on them to see if there exists potential patterns that is similar
to distribution of part-of-speech tags. The evaluation metric
used is the F1 score, comparing clustering predictions to the
ground-true labels. Since part-of-speech tags are distributed
differently in each domain of dataset, we also calculate general
weighted F1 scores to compare each of them. Given the
varying distribution of part-of-speech tags in different dataset
domains, we also calculate general weighted F1 scores, i.e.,
the sum of all F1 scores of each specific tag in a layer, to
compare performance on each dataset.

As shown in Fig 5(a), RoBERTa’s performance fluctuates
between 3rd and 7th layer in these datasets. Starting from the
eighth layer, the performance begins to decline and reaches
the lowest point in the last layer. This observation suggests
that part-of-speech information is retained in different layers
when fine-tuned on different datasets. Nouns and verbs are
important components in most sentences. As such, how they
are distributed in different layers worth studying. We further
analyzed the distribution of different tags in each layer. In
Fig 5(b), it can be observed that the lines representing Finance,
Review, and SemCor datasets are smoother than the line
representing Sentiment140 dataset. The texts in Sentiment140
are tweets, which may lack necessary components as support
for structure connections. As a result, the information of nouns
may be affected. This infers that nouns are not processed inde-
pendently by the model; instead, they are influenced by other
elements within the sentence. Compared to NOUN F1 scores,
VERB F1 scores in Fig 5(c) are much lower in most layers.
These scores begin to decline at earlier layers, starting at 7,
whereas NOUN scores start to decrease at layer 9. The lines
representing Finance, Review and SemCor datasets become
steady from layer 6, indicating that verb information becomes
more consistent and less variable by this point. The line of
Sentiment140 also supports the inference that information of
words are not processed independently in RoBERTa.
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Fig. 5. F1 scores for different tags; (a) refers to total weighted F1 scores of each layer; (b) refers to F1 scores of nouns; (c) refers to F1 scores of verbs; (d)
refers to F1 scores of conjunctions; (e) refers to F1 scores of determiners; (f) refers to F1 scores of adjectives.

Other tags, such as CONJ and DET, are also illustrated
in Fig 5. Due to the limited range of word definitions for
CONJ and DET words, such tokens are less varied and often
perform well in certain layers, with F1 scores exceeding 90%.
The ADJ tag, showed in third picture of Fig 5(f), indicates the
differences among three datasets in their use of adjectives. The
Review dataset uses many ADJ words in complete sentence,
while Sentiment140 tends to use ADJ words but in phrases or
short texts. The Finance datasets, which consists of analytical
contents, uses relatively few ADJ words. This also proves that
complete information affects words encoding and following
passing through layers.

E. Further Experiments on RoBERTa

Learning patterns of part-of-speech tags aligns with hu-
man language habits. The part-of-speech experiment in Sec-
tion IV-D illustrates that the Transformer-based model indeed
has similar functions as human brains in learning language
structures. Nevertheless, it is well-known that humans learn
languages not only through basic structures and feelings but
also by studying deeper connections, such as logic within
words and sentences. Given this, we would like to explore
whether the model also has similar performance as humans
in logic aspects, especially in word illustrations and sentence
inductions. We then designed two experiments to explore this
objective. The results may further provide insight into the
model’s internal reasoning process. For word illustration, we
designed a word sense disambiguation experiment. The word
sense disambiguation studies how to determine which sense
of a word is used in a particular context when the word has
multiple meanings.

Differentiating word definitions requires logic, such as rec-
ognizing indicators and signs. Since this experiment usually
focuses on the same word for study, it provides a clear way for
comparison. These make word sense disambiguation suitable
for investigating word logic. In the word sense disambiguation
experiment, we first choose a target word that frequently
appears in texts, and use the SemCor dataset [47] to gather
all texts containing the target word. We define the number
of distinct meanings for the target word as the number of
ground-true labels. Then, we feed all the selected texts into the
model and extract the corresponding tokens of the target word.
We performed clustering on these tokens to classify them into
the same number of clusters as the ground-true labels and
calculate the accuracy of clustering prediction. The results of
this experiment suggest that the token distributions for the
target word do not align with those of definitions.

TABLE VII
K-MEANS PERFORMANCE COMPARISON FROM LAYERS 1 TO 12 FOR THE

TARGET WORD “BE” AND THE TARGET WORDS “BE, IS, ARE, WAS”.

Layer # “be” “be” extensions
Layer1 25.65% 32.57%
Layer2 44.61% 40.94%
Layer3 47.71% 44.44%
Layer4 51.14% 41.05%
Layer5 48.69% 45.84%
Layer6 47.71% 46.1%
Layer7 48.85% 47.96%
Layer8 43.14% 46.7%
Layer9 45.10% 46.41%
Layer10 36.93% 41.08%
Layer11 30.72% 34.35%
Layer12 31.53% 28.18%
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For instance, Table VII shows an example of the target word
“be” in the experiment, and none of the layers performs well,
as accuracy is below or not over 50% significantly. We then
include more extensions for “be” by finding texts containing
“is”, “are”, and “was”. However, as shown in Table VII, the
accuracy was not improved.

For sentence inductions, we designed an entailment exper-
iment. Entailment describes the logical relationship between
two parts: the premise and the hypothesis (or conclusion),
where the truth of the premise guarantees the truth of the
hypothesis. To produce the correct answer, the model must
understand both parts separately and coherently. This exper-
iment is suitable for evaluating the model’s ability to find
relationships between texts. We use the SNLI dataset [48] with
prepared premise and hypothesis texts for this experiment.

Since the premise and hypothesis are paired in the dataset,
we group them together as a unit. We then feed these units
into the model and obtain the hidden states. Then we apply
clustering to these hidden states and calculate accuracy by
clustering predictions and ground-true labels from the dataset.
The results indicate that the model fails to recognize the logical

TABLE VIII
THE PERFORMANCE OF LAYERS 1 TO 12 WAS EVALUATED FOR THE TASK

OF ENTAILMENT.

Layer # K-means
Layer1 37.22%
Layer2 37.33%
Layer3 36.07%
Layer4 35.7%
Layer5 35.98%
Layer6 36.15%
Layer7 36.34%
Layer8 36.04%
Layer9 37.62%
Layer10 34.96%
Layer11 34.5%
Layer12 38.55%

relationships between premise and hypothesis. As shown in
Table VIII, the accuracy is around 1

3 , suggesting that the
model is randomly selecting between three possible outputs:
entailment, contradiction and neutral.

The failures observed for the two tasks above indicate that
the internal mechanisms of the model do not mirror human
thought processes. The Transformer-based model is highly
task-driven and influenced by internal algorithms. It needs
directions from a specific task to adapt to a new dataset. The
internal algorithm and mechanism guide the model to provide
a determined word as the answer. In sentiment fine-tuning,
the model is trained to find the pattern of polarity of words.
The connections between words in a sentence are a lower-level
task in training sentiments, which explains why the model can
identify patterns in part-of-speech tags. However, induction
and word definition combinations are higher-level features that
current internal workings did not learn about. This is why
the model fails in these two experiments. Only when a task
requires the model to identify higher-level information, it tends
to align with those specific patterns.

V. CONCLUSION

In this work, we analyzed the hidden states of the RoBERTa
model trained on different datasets. Clustering algorithms re-
veal that most earlier layers exhibit stead performance without
significant fluctuations, while the performance of the last three
layers gradually improves. However, the head analysis showed
that some heads in the last three layers do not perform well,
which is in contrast with the overall results for model layers.
This indicates that certain layers and heads in the model may
be redundant in processing and transferring information. In
frequency-based analysis, we observed that as the number of
frequent words in the input sentence increases, more layers
would yield better performance. In part-of-speech analysis, we
find that the hidden states have learned patterns corresponding
to word tags in the first few layers. This also indicates that
the last few layers contain more concentrated and abstract
features. Further experiments on word sense disambiguation
and entailment suggest that the RoBERTa model does not work
intuitively as the human brain. The model seems to find and
adapt to patterns according to the given algorithms and task
prompts, instead of understanding the underlying meanings.
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