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Abstract—Large language models have achieved remarkable
success in natural language generation, yet their reliance on
static, pre-trained parameters limits their ability to provide
accurate and up-to-date information. Retrieval-Augmented Gen-
eration (RAG) addresses this limitation by integrating external
knowledge retrieval into the generation process, making it a
powerful framework for knowledge-intensive tasks. As RAG
systems evolve, researchers have investigated various technical
approaches, ranging from differing architectures for retrievers
and generators to complex combinations of the two. However, few
surveys provide a unified view of RAG from a mathematical and
algorithmic perspective. In this survey, we present a systematic
analysis of RAG systems from the perspective of fundamental
algorithms. We introduce representative algorithms with formal
definitions, and examine how modern RAG systems select and
combine these components in practice. We also summarize typical
application domains and benchmark performance across tasks,
showing the strengths and weaknesses of different algorithms.
Our study provides a structured foundation for understanding
the principles, implementations, and challenges of RAG.

Index Terms—Retrieval Augmented Generation, Large Lan-
guage Model, Information Retrieval, Text Generation

I. INTRODUCTION

Arge language models (LLMs) have shown strong per-

formance in natural language generation and task pro-
cessing [, [2], [3]. Nevertheless, their reliance on static,
pre-trained parameters limits their ability to produce accu-
rate responses when the necessary knowledge and up-to-
date information are absent [4]], [5]. These challenges have
prompted growing interest in retrieval-augmented generation
(RAG), which integrates information retrieval mechanisms
with generative models [6]].

Although RAG adheres to a general framework that in-
tegrates retrieval and generation (see Figure [I)), its imple-
mentations differ substantially. Systems may employ diverse
retriever and generator architectures, and their combinations
are highly flexible. Existing surveys focused on high-level
taxonomies or system architectures [[7]], [8], [9], [LO]. However,
for both retrieval and generation, formal mathematical defini-
tions offer a clear and rigorous way to describe algorithms.
They also provide a foundation for analyzing core algorithmic
principles, comparing methods at a fundamental level, and
identifying key trade-offs in performance, scalability, and
generalization.
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Fig. 1. The general framework of RAG.

This motivates the need for a survey of fundamental al-
gorithms in RAG, which goes beyond surface-level cate-
gorization by frameworks or tasks, and instead emphasizes
precise formulations, theoretical underpinnings, and algorith-
mic design patterns. According to the definition of RAG by
Lewis et al. [6]], we first decompose the framework into two
main components: the retriever and generator. An overview
of our taxonomy is shown in Figure [2| which summarizes
the major categories of retrievers and generators, along with
representative methods under each branch. For the retrieval
module, we propose a two-level classification. Fundamental
retrieval methods operate independently and do not rely on
other retrieval strategies. Advanced retrieval methods, in con-
trast, are built upon fundamental ones and enhance retrievers
via additional mechanisms, such as hybridization, iteration,
or adaptation. Similarly, we categorize generation methods
into two groups. Fundamental generators are classified by
their core architecture, e.g., encoder-decoder, decoder-only,
and diffusion. Advanced generation refers to techniques that
build on these architectures to improve reasoning, alignment,
or control, e.g., Chain-of-Thought (CoT) prompting [11]] or
reinforcement learning (RL) [12]. For each category, we select
representative algorithms and present them with mathematical
definitions or algorithm pseudocodes under the unified RAG
framework. This allows us to explain their working mechanism
consistently and rigorously. We also examine how modern
RAG systems combine retrievers and generators in practice,
and analyze the rationale behind these choices based on their
respective strengths and weaknesses. Finally, we summarize
the main application areas of RAG, e.g., open-domain question
answering, knowledge-grounded dialogue, fact-checking, and
scientific reasoning. We review the performance of different
methods on representative benchmark datasets, helping read-
ers understand where RAG offers the most value and what
challenges remain.

The contributions of this survey are summarized as fol-
lows: 1) We propose a unified mathematical framework for
modeling the retrieval and generation components in RAG.
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Fig. 2. The taxonomy of RAG in this survey.

This framework supports both with- and without-re-ranking
settings, and generalizes common autoregressive generation
modes. 2) We present a comprehensive taxonomy of RAG
algorithms. Retrieval methods are classified into fundamental
and advanced types based on their structural independence,
while generation methods are grouped into fundamental archi-
tectures and advanced enhancement strategies. Representative
algorithms in each category are described with formal equa-
tions or pseudocodes under a consistent framework. 3) We an-
alyze how modern RAG systems combine different retrievers
and generators in practice, and compare these combinations
based on theoretical properties and empirical performance.
4) We review key application domains of RAG, summarize
frequently used benchmark datasets, and provide insights into
task-specific challenges and performance trends.

The remainder of this paper is organized as follows. Sec-
tion [ outlines the overall RAG formulation and unified
equations. Section [ITI] reviews retrieval algorithms, covering
both fundamental and advanced methods. Section focuses
on generation methods, including core architectures and ad-

vanced generation strategies. Section [V] examines the practi-
cal applications of RAG, the selection of retriever—generator
combinations, and performance on representative benchmarks.
In each technical section, algorithms are presented in increas-
ing order of complexity, from classical approaches to recent
developments. Finally, Section [VI| concludes the survey.

II. FORMAL DEFINITION OF RAG

A unified mathematical framework that captures the core
components of RAG is defined as:
N
prac(outputfinput) ~ T S p,(dlinput, D)
i=1deD* (1)
Do (Outputi |inputd7 Outputl —1 ) )

where d denotes one of the retrieved documents; input denotes
the original query; D*denotes the normalization set used in
retrieval, which equals Dyp.x When re-ranking is applied and C
otherwise. D,k denotes the set of top-K retrieved documents
and C denotes knowledge base; output, is the i-th token of
the output sequence; input,; denotes the concatenation of the
query and document d; output,.,_; represents the generated
tokens in the former steps. It integrates Retrieval (p,(-)) and
Generation (py(-)) components, each playing a critical role in
incorporating external knowledge into the generation process.

a) Retrieval: The retrieval module aims to identify the
most relevant documents Dypx from a knowledge base C
given an input. The retriever (parameterized by 7)) estimates
the relevance distribution for each document (p, (d|input)).
The top-K most relevant documents are retrieved by:

Dyopx = argtop-K, . py(d|input). 2)

RAG methods often involve a re-ranking step for post-
retrieval optimization to refine the retrieved documents before
integrating them into the response generation. This operation is
consequently reflected in the overall equation. The re-ranking
refines the initial ranking of documents in D,k by assigning
new scores via a scoring function f,(input, d). The normalized
relevance distribution is given by:

pp(d | input, D*) =
exp((1—6) log py,(d |input)+6 f, (input,d)) (3)
> wen- exp((1—6) log py(d’ | input)+f, (input,d’))

where § € {0,1} indicates whether re-ranking is applied.
D* =C when § = 0; D* = Dyop.x Wwhen 6 = 1. When ¢ = 0,
the distribution simplifies to p,(d | input,C) = p,(d | input);
when & = 1, it reduces to the standard re-ranking normaliza-
tion over Digp k.

b) Generation: The generation module produces the tar-
get output sequence based on the enriched query input,;, which
is obtained by combining the original input with the retrieved
document d. The overall sequence probability is given by:

N
pe (output|input,;) = Hpg(outputihnputd,outputlzi_l). 4)
i=1
The above RAG definition adopts the traditional token-
by-token approach for text generation, whereas recent ad-
vancements in multimodal research have led to the rise of
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alternative generation models, e.g., diffusion models [34].
Diffusion models, originally developed for image and audio
generation, iteratively refine noisy inputs into structured out-
puts via a denoising process, fundamentally differing from
autoregressive text generation. Due to their distinct nature,
diffusion-based generation models do not fit within the above
formulations. We will explain them in Section [V-A3]

III. RETRIEVER ALGORITHMS

In the RAG framework, the retriever selects relevant infor-
mation from an external knowledge base or corpus to support
text generation. The goal is to rank documents based on
the input query and provide useful context to improve the
accuracy, richness, and reliability of generated content. Here,
we classify retrieval approaches into two main categories:
Fundamental and Advanced Retrieval Methods. Fundamental
Retrieval Methods are independent approaches that do not rely
on other retrieval techniques. They form the core of a retrieval
system and can retrieve information on their own. It includes
sparse retrieval, dense retrieval, generative retrieval, graph
retrieval, and multimodal retrieval. In contrast, Advanced
Retrieval Methods build on fundamental retrieval methods
by applying additional strategies, including hybrid retrieval,
iterative retrieval, adaptive retrieval, and some post-retrieval
optimization methods, to improve recall or accuracy without
changing the fundamental retrieval process.

A. Fundamental Retrieval Methods

1) Sparse Retrieval: Sparse retrieval is a method that rep-
resents text as high-dimensional sparse vectors and ranks doc-
uments by keyword matching. It mainly uses term frequency-
based statistical models to measure the relevance between
a query and documents. Common sparse retrieval methods
include TF-IDF [36] and BM25 [13]].

a) TF-IDF: Term Frequency-Inverse Document Fre-
quency is a widely used sparse retrieval method that evaluates
the relevance between a query and a document based on
statistical term importance. The TF-IDF score is computed
as the product of term frequency (TF) and inverse document
frequency (IDF) [14]:

TF-IDF(t, d) = TF(t, d) x IDF(t) (5)

where t represents a term; d represents a document. TF
measures how frequently a term appears in a document
(TR(t,d) = L (Ifild)’ where f(t,d) is the raw frequency of term
t in document d; |d| represents the total number of words in d).
IDF reduces the weight of frequently occurring terms across
documents (IDF(t) = log nﬂt, where N is the total number of
documents; n; is the number of documents containing term

t). The TF-IDF score of a given input and a document is

= Y TF-IDF(t,d). (6)

tE€input

score(input, d)

Next, a Softmax transformation is applied to normalize scores
across the retrieved documents:

exp(score(input, d))

d t
py(d | input) = > ey XD (score(input, d'))”

)

b) BM25: Best Matching 25 is an extension of TF-
IDF that introduces non-linear term frequency scaling and
document length normalization to improve retrieval perfor-
mance. It is a ranking function based on the probabilistic
relevance framework, designed to rank documents according
to their relevance to a given query [13]]. Unlike TF-IDF, which
assumes a linear relationship between term frequency and
relevance, BM25 applies a saturation function to control the
influence of frequently occurring terms. The BM25 score for
a document d concerning a query input is computed as:

Z IDF f(tv d) (kl +1)
tE€input (tvd)+k1 (1 b+b- avgdl)
®)
where avgdl is the average document length in the corpus; &k
is a hyperparameter controlling term frequency saturation; b is
a hyperparameter controlling document length normalization.
To integrate BM25 into RAG, the BM25 score is converted
into a probability distribution by

exp(BM25(d, input))
DDy XP(BM25(d, input))

2) Dense Retrieval: Dense Retrieval, e.g., Dense Passage
Retrieval (DPR) [15]] typically employs a Dual Encoder archi-
tecture to encode queries and documents separately into the
same vector space, enabling matching by vector similarity.
Compared to Sparse Retrieval, Dense Retrieval relies on
high-dimensional dense vectors generated by neural networks,
which better capture semantic information [37]], [38]].

In the dual encoder structure, a query input and document d
are mapped to the same vector space via independent encoders:
q = folinput) € RY g = g,,(d) € R, where f,(-) and
gn(-) are query and document encoders, typically BERT-like
language models [39]; ¢ and r4 are vector representations, usu-
ally normalized before similarity computation; 7; and 7y are
learnable parameters that are typically distinct for queries and
documents. The relevance score is given by: s(q,74) = q ' 74.
Common alternatives include cosine similarity or Euclidean
distance, whereas dot-product is computationally efficient. The
normalized relevance distribution over documents is given by:

BM25(d,input) =

9)

pn(d | input) =

exp(s(g,7a))
Zd'ec exp(s(q,7ar))

Dense Retrievers are frequently trained by contrastive learning:

Py (dlinput) = (10)

exp(s(g, 7a+))

L =—log exp(s(q,ra+)) + 2 g- ey exp(s(q,7a-))’

(1)

where d* denotes the positive (relevant) document corre-
sponding to the query, and d~ denotes a negative (irrelevant)
document sampled from the set /N of negative examples.

To enable efficient top-K retrieval over large corpora in
vector space, approximate nearest neighbor (ANN) methods
partition the vector space. Key categories include hash-based,
and vector quantization-based ANN methods.

Locality Sensitive Hashing (LSH) maps similar vectors to
the same hash buckets [16], thereby reducing the search space
during retrieval. Instead of comparing a query against all
vectors in the corpus, LSH allows the system to focus only
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on those candidates that fall into the same or nearby buckets,
which are likely to be semantically similar. This significantly
lowers the computational cost, making it possible to perform
approximate retrieval in sublinear time.

Product Quantization (PQ) splits high-dimensional vectors
into subvectors for efficient quantization [40]; among its
variants, IVFPQ is the most widely used, as it combines an
inverted file index with PQ to significantly accelerate large-
scale approximate nearest neighbor search. Faiss is an open-
source toolkit for vector similarity search that incorporates var-
ious indexing methods—including IVFPQ (implemented via
the IndexIVFPQ class)—to enable scalable, fast, and memory-
efficient approximate nearest neighbor search on billion-scale
datasets [17].

3) Generative Retrieval: Generative retrieval directly pre-
dicts the identifier or key content of the target document via
sequence generation models, bypassing the explicit similarity
computation in traditional retrieval. Its core paradigms can
be categorized into two types: a) Identifier-based Generative
Retrieval: Assigns structured identifiers (e.g., hierarchical en-
coding) to documents, enabling the model to directly locate
documents by generating identifiers. A representative method
is Differentiable Search Index (DSI) [18]. b) Direct Content-
based Generative Retrieval: Directly generates key textual
fragments of documents (e.g., titles or entity names). A
typical approach is Generative Entity Retrieval (GENRE) [19].
Another related method is GeAR [41], which generates aux-
iliary localized content from retrieved documents to enhance
retrieval interpretability and fine-grained information access.

a) DSI: DSI aims to transform the entire retrieval
pipeline into a single, unified generative model. Instead of
following the traditional multi-stage “retrieve-then-rank” ap-
proach, DSI encodes the entire corpus into the model’s pa-
rameters during an indexing stage, and then directly answers
queries by generating document identifiers in the retrieval
stage. In other words, DSI “memorizes” the corpus and, at
inference time, uses this internalized knowledge to map a
query directly to a relevant document.

In the indexing stage, DSI learns a generative model hy(-),
mapping the textual representation of each document d to a
document identifier y (which can be a token sequence):
yel, (12)

Yy = h9(d) = [y17y27"'7yT]7

where hy(-) is a sequence-to-sequence model based on Trans-
former (e.g., TS), with parameters 6 [42]; ) represents the set
of all valid document identifiers. The indexing objective is op-
timized with a standard seq2seq cross-entropy loss predicting
docids from document tokens.

In the retrieval stage, given an input, the DSI model directly
generates the corresponding document identifier §:

¢ = Decoder(input; 0) = [¢1, G, - - -, 7] (13)
The probability of generating g is given by:
T
po (i | input) = [ [ po(ie | input, g;). (14)

t=1

To obtain a ranked list of documents, DSI uses beam search
to generate multiple candidate identifiers, and selects:

Diopx = arg top-K, <y pe(ylinput), (15)

choosing the top-K most probable document identifiers, which
are then mapped to their corresponding documents. Retrieval
is optimized with a sequence-to-sequence cross-entropy loss
predicting docids from queries, and the retrieval and indexing
objectives are combined into a joint training objective for
simultaneous learning.

b) GENRE: Generative Entity Retrieval redefines the
entity retrieval problem as a sequence generation task rather
than a traditional multi-class classification problem. Given an
input text, e.g., a context containing entity mentions, the goal is
to generate the corresponding entity name y, e.g., a Wikipedia
title, where the generation process follows an autoregressive
token-by-token decoding approach.

Let y = [y1,¥2,.--,yr] be the sequence of tokens repre-
senting the entity name. The GENRE model, parameterized
by 6, learns the probability distribution as follows:

T
po(y | input) = [ [ po(ve | input, y<y), (16)

t=1

where the input consists of the query input and the previously
generated tokens y.;. Then, GENRE is trained with a standard
sequence-to-sequence objective that maximizes the conditional
likelihood of the target entity name given the input, following
a teacher forcing strategy. During the inference stage, given
the input, the model autoregressively generates the entity name
like the DSI generation process (Like equation (13)).

To ensure that the generated output corresponds to a valid
entity name from the knowledge base, GENRE employs con-
strained beam search, which restricts decoding to valid prefixes
represented by a prefix tree over the candidate set. At inference
time, the model explores the search space by maintaining the
top-K most likely partial sequences at each decoding step, and
returns the top-K completed entity names according to their
generation probabilities, this step is also like the equation (I5)).

In summary, GENRE transforms the entity retrieval problem
into an autoregressive generation task, directly generating
entity names using a standard seq2seq model with constrained
decoding. This approach not only captures fine-grained inter-
actions between the input query and entity names, but also
significantly reduces storage requirements and achieves high-
quality retrieval results via precise probability calculations.

4) Graph Retrieval: Graph retrieval aims to select the
most relevant nodes, subgraphs, or documents from a graph-
structured knowledge base for a given query [43]. The goal is
to assign relevance scores to candidates and retrieve the most
relevant information from the graph. Graph retrieval methods
can be classified into two main categories. a) Topology-based
retrieval methods: These methods use the graph’s connectivity
to extract relevant information. A representative method is G-
Retriever [20], which applies graph topology and optimization
techniques to extract a connected subgraph relevant to the
query. b) Graph-deep-learning-based retrieval methods: These
methods use graph representation learning, typically with
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Graph Neural Networks (GNN), to encode nodes and their
neighborhoods into dense embeddings. Relevance is computed
by comparing the query embedding with node embeddings. A
representative method is GNN-RAG [21]].

a) G-Retriever: This method uses a topology-based ap-
proach to extract a connected subgraph most relevant to
the query. It formulates the retrieval problem as a Prize-
Collecting Steiner Tree (PCST) optimization. First, in the prize
assignment stage, a candidate node set V} is obtained using
k-nearest neighbors based on text embeddings. Each node d
in this set is assigned a prize:

k —1, if d is ranked 7 in Vj;

. (17)
0, otherwise.

prize(d) = {
where Vj; is the set of candidate nodes found via similarity
search between the query (input) and graph nodes; ¢ is the
ranking position of d in Vj,. Each edge e may also be assigned
a prize(e) in a similar way based on its relevance to the query.
In certain cases, edges can be transformed into virtual nodes
to fit the PCST optimization framework. Next, during the
PCST Optimization stage, after assigning prizes, G-Retriever
solves the PCST optimization problem to extract a connected
subgraph S* = (V*, E*) from the graph G. The optimization
objective is defined as:

N .
S = argmaxsca, S connected ( E pl’lZG(d)—f—
deVs

Z prize(e) — cost(S)),

eeFEg

(18)

where the edge cost is defined by cost(S) = |Eg| x C.. Vg
and Eg are the node and edge sets of the selected subgraph
S; C. is a predefined edge cost.

In subgraph retrieval, the extracted subgraph S* represents
the most relevant structure in the graph. The nodes in S*
serve as candidate retrieval results. The retrieval process can
be described probabilistically:

exp (smpo(d, input)), if d € S*;

Py (d|input) oc {0 (19)

, otherwise,
where  sopo(d, input) is the topology-based relevance score
between the query input and node d. This equation states
that only nodes in the optimal subgraph S* receive non-zero
retrieval probability.

b) GNN-RAG: Given a query input, GNN-RAG first
constructs a dense subgraph G,. Each node d is initialized

as
h/ElO) = Xd,

where x4 denotes the feature vector (e.g., text embedding) of
node d. The node representation is then updated through L
layers of GNN message passing:

hg) = h((il_l), Z w(input,?’d,j)mgj) A=1,...,L,

JEN(d)
(20)
where N(d) denotes the set of neighbors of node d; rq ; is the
relation type on the edge from d to j; w(input,r) measures

the relevance between the query and relation; m&? is the
message passed from neighbor j at layer [; and v(-,-) is
a learnable aggregation function. After L layers, we obtain
the final representation hq = hfiL). The model treats node
classification as a softmax over all candidate nodes to compute
the retrieval probability:

exp (WThd)
Parecexp (Wha)’
where w is a trainable classification weight vector and C
denotes the candidate node set. The nodes with the highest
pn(d | input) are returned as retrieval results, along with their
shortest paths to the query entity for downstream reasoning
and generation.

In addition to these two methods, some methods combine
both strategies. For example, hybrid approaches may apply k-
hop subgraph extraction (topology-based retrieval) and then
refine the candidates using GNN-based encoding and rank-
ing [44]. This combination benefits from both the graph’s
structural properties and the semantic richness.

5) Multimodal Retrieval: Multimodal retrieval aims to pro-
cess and understand data from multiple modalities, such as
text, images, audio, and video, to meet diverse user needs.
By integrating and aligning different modalities, the system
enables cross-modal retrieval and matching within a unified
framework. Multimodal retrieval methods can be categorized
into three types. a) Feature-Level Fusion Retrieval: This ap-
proach integrates features from different modalities during
the feature extraction process. For instance, in the UnilR
model, image and text features are merged within a unified
framework and jointly optimized, resulting in a comprehensive
multimodal representation that leverages complementary infor-
mation to enhance retrieval performance [22]]. b) Contrastive
Learning-based Retrieval: This approach utilizes separate en-
coders for each modality and aligns their representations in
a shared embedding space via contrastive objectives. For
example, the CLIP model [45] trains independent image and
text encoders on large-scale datasets using a contrastive loss,
effectively bridging the semantic gap between modalities. This
enables robust cross-modal retrieval [23], such as performing
image search with textual queries, without directly fusing raw
features during extraction. ¢) Modality Completion Retrieval:
This method uses generative models to bridge gaps between
modalities or to supplement missing modality information.
An example is the R2ZGAN model [24], which employs a
generative adversarial network (GAN) [46] to create dish
images from recipe text. The generated images, together with
real images, are used to train a cross-modal embedding space,
improving retrieval performance for food-related queries. This
approach not only enhances cross-modal feature representation
but also provides an intuitive way to explain retrieval results
through generated content.

a) UnilR: UnilR is a unified framework designed to
handle various retrieval tasks across different modalities, such
as text and images. It interprets user instructions to perform
specific retrieval tasks, aiming to retrieve the most relevant
contents Dy,p.x from a knowledge base C based on a given
input. UnilR employs two main fusion strategies to compute

pn(d | input) = 21
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the relevance score p, (d | input), namely Score-Level Fusion
and Feature-Level Fusion.

In the Score-Level Fusion approach, separated encoders
process different modalities. Their outputs are combined at
the score level. For example, for a query consisting of an

image input; and text input, with an instruction input;, the
combined query representation is given by:
f(input,, input,, input, ) = wy fy(input;) + 22)

w2 fT (inplntv inputinst)

where f7(-) and fr(-) are image and text encoders, respec-
tively; w denotes learnable weights. For a candidate document
with image d; and text d;, its representation is given by:

f(di,dy) = w3 f1(di) + wa fr(dy),

Then, the relevance score is computed as the dot product of
the query and candidate representations:

(23)

Sinput,d = f (input;, input,, input, )" - f(d;, dy). (24)

On the other hand, the Feature-Level Fusion method inte-
grates features from different modalities before computing the
relevance score. The query representation is generated by a
multimodal encoder fuix(-) which processes the combined
input, fuix(input;,input,,input,,, ). Similarly, the candidate
document representation is also given by a multimodal en-
coder, fyvix(d;,d;). Then, the relevance score is the dot
product of the multimodal representations of a query and a
document:

Sinpu,d = fvix (input;, input,,, input;, ) - fvix (di, di). (25)

During the training process, UnilR is trained using a con-
trastive loss that maximizes the relevance scores of correct
query—candidate pairs while minimizing those of incorrect
pairs. This training enables the model to effectively handle
diverse retrieval tasks across multiple modalities. Thus, the
probability p,(d | input) can be approximated by normalizing
the similarity scores over all candidate contents in C:

exXp (Sinpul,d)
> drec €XP (Sinpuud’)

where Sinpu,q s the similarity score between the query and
candidate contents d. The top-K most relevant contents Digp.x
are then selected based on these probabilities.

b) CLIP: In CLIP, contrastive learning is employed to
simultaneously train an image encoder f;(-) and a text encoder
fr(-) so that the representations of paired images and texts
are brought close together in a shared embedding space,
while those of non-matching pairs are pushed apart. This
training mechanism enables the model to learn cross-modal
representations that can be directly used for retrieval tasks such
as retrieving images based on text queries (or vice versa).

During the feature extraction and projection phase, for a
given image [ and text 7', features are first extracted using
their respective encoders:

Iy = fi(I),

; (26)

py(d | input) =

Ty = fr(T) 27)

Then, linear mappings (W; and Wr) are applied to project
these features into a common multimodal embedding space,
followed by Ly normalization:

W1

_ WrTy
Wil

T, = —-_. (28)
W Tyl

To measure the relevance between the image and text, the nor-
malized cosine similarity ({-,-)) is computed and scaled by a
learnable temperature parameter 7: s(I,T) = exp(7)- (I, T%).
During the pre-training phase, for a batch of N image-text
pairs, a similarity matrix S of size IV X N is constructed, where
the (7,7)-th element is given by: S;; = exp(7) - (I¢,i, Tej)-

To distinguish between the true pairs and false pairs, a
symmetric cross-entropy loss is applied in both directions. For
the image-to-text direction, the loss is defined as:

1 & exp(7) - (I, Tei)
frr = Ty 2l SV expr) LTy
For the text-to-image direction, the loss is given by:
1Y exp(7) - (Te,is Ie,i)
Lror == 3 log s Lo, (30)

i=1 Z;V:1 exp(7) * (Te,is Le,j)
The overall los L is the average of these two directional losses.
After pre-training, the learned cross-modal embeddings can
be directly applied to retrieval tasks. Taking a query input
(e.g.text or image) as an example, its embedding is obtained
via a query encoder f,(-) with projection and normalization:

. = W, fq(input)

[Wq fq(input)]|
For each candidate d € C, e.g., an image or text, its embedding
is obtained by a document encoder (f4(-)):

= Wafa(d)
[Wafa(d)[l”

€19

(32)

The relevance score between the query and each candidate is
computed using the scaled cosine similarity:
score(d|input) = exp(7) - (g, 74)- (33)

By applying a softmax function over the scores of all candi-
dates, a probability distribution is given by:

po(dlinput) = P70, 7a)

= . 34
S e D7) - (¢, 7ar) G

The top-K most relevant documents are then could be selected.

CLIP jointly trains an image encoder and a text encoder
to learn a shared multimodal embedding space. It computes
relevance via normalized cosine similarity with temperature
scaling, and selects top-K candidates by applying softmax
over similarity scores, enabling efficient semantic cross-modal
retrieval.
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¢) R2GAN: The overall objective of R2ZGAN is to learn a
common embedding space for recipes and images, while also
generating images from recipe embeddings for interpretable
retrieval. In the Feature Extraction and Embedding Mapping
stage, for a recipe 1" and an image I, the raw features are first
extracted using their respective encoders same as the CLIP
methods and also project these features into a common space
as equation (27) and equation (28) show. Then we could also
get I, and T,. Here fr(-) employs a bidirectional LSTM
and hierarchical LSTM to encode the recipe text, fr(:) is
a modified ResNet-50 for image feature extraction. In the
Cross-Modal Image Reconstruction stage, a generator G is
used to reconstruct images from either modality, which both
enhances the compatibility of the learned embeddings and
provides visual explanations for retrieval:

vf =G(T.), vp=G(l), (35)

where v}r is the image generated from a recipe embedding;
v,{ is the image reconstructed from an image embedding. To
ensure that both the embedding space and the reconstructed
image space can discriminate between positive and negative
samples, a two-level ranking loss is introduced. Let ¢, pe,
and n. denote the query, positive, and negative embeddings,
respectively, and let input,, p,, and n, be the corresponding
reconstructed images. The loss is defined as:

Lrank = max{(g, ne) — (¢, pe) + a1, 0} (36)
+ o max{d(input,, p,,) — d(input,, n,) + az, 0},

where (a, by denotes cosine similarity in the embedding space,
d(a,b) denotes Euclidean distance in the image space, «; and
ag are margin hyperparameters, and p is a trade-off factor.

R2GAN introduces two discriminators, [J; and Dy. The
first loss term, L£p,, measures the ability of D; to distinguish
between real images and those reconstructed from image
embeddings. Similarly, £p, quantifies how well Dy can differ-
entiate between images generated from image embeddings and
those generated from recipe embeddings. For the generator,
the adversarial objective L combines feedback from both
discriminators, encouraging the generator to simultaneously
fool D; and D,. To ensure that the reconstructed images
preserve as much information from the originals as possible,
the reconstruction loss Liecon 1S introduced, which penalizes
discrepancies both in the feature space and the image space.
In addition, to incorporate high-level semantic information,
the semantic loss Ly is employed using a cross-entropy
formulation, aiming to align the generated representations with
the correct food category labels. Then, the overall loss for the
embedding and semantic modules is: Ly = Lrank + ¥ Lrecon +
A Lsem. The full loss for updating the generator is defined
as: Loy = L6 + 6 Lrecon Where v, A, and ¢ are balancing
hyperparameters.

During retrieval, for a given query input (e.g., a recipe or
an image), its embedding is same as equation (3I)). where
fq(+) here also denotes the corresponding encoder (fr for
recipes or f; for images). For each candidate document d € C
(recipe or image), the embedding is same as equation (32).
The relevance score between the query and a candidate is

Algorithm 1 Hybrid Retrieval with Complementarity Objec-
tives and Candidate Selection
Require: Query g, Document Collection D, Lexical Retriever
S, Semantic Retriever D, Orthogonality Module O, bal-
ance factor A, top-K parameter K
Ensure: top-K ranked documents for query ¢
1: for each document d € D do
2: s+ S(q,d) > Compute lexical similarity (e.g.,
BM25)
3: r <+ D(q,d) > Compute semantic similarity (e.g.,
inner product of BERT embeddings)
: Scoreguai(q,d) <~ s+ X-r
5: end for
6: Lortho + O({s,7}aep) > Compute orthogonality loss to
reduce redundant features
7: Update model parameters by minimizing L;ytq; = Lye; +
Lortho
8: return top-K  documents
Scoregual(q, d)

from D ranked by

computed as a scaled cosine similarity, and the resulting
probability distribution is also same as equation (34). Then
top-K candidates cloud be selected. Furthermore, for recipe
queries, the reconstructed image can be used to provide an
interpretable explanation for the retrieval results.

R2GAN exemplifies the concept of Modality Completion
Retrieval with GAN to generate dish images from recipe texts.
These generated images, used alongside real images, facilitate
the learning of a robust cross-modal embedding space that not
only improves retrieval performance for food-related queries
but also provides intuitive visual explanations for the results.

B. Advanced Retrieval Methods

1) Hybrid Retrieval: Hybrid retrieval methods aim to com-
bine the strengths of different basic retrieval methods to
improve both recall and accuracy. A representative method
(Algorithm (1)) in this area combines a sparse retriever (such
as BM25) with a dense retriever (such as DPR) [47]]. In this
work, dense retrieval methods encode queries and documents
into dense vectors capturing semantic meaning, whereas sparse
retrieval methods leverage lexical matches. The proposed
hybrid approach combines these two methods, enhanced by
embedding-level and input-level orthogonality constraints to
maximize complementarity between sparse and dense retrieval.

2) Iterative Retrieval: Iterative retrieval methods allow the
retrieval process to interact with the reasoning process. A
representative method (Algorithm [2) is based on the ReAct
framework [26], where the model alternates between reasoning
(generating a CoT) and acting (generating a new query) based
on previous retrieval results. This process continues until
sufficient information is gathered.

3) Adaptive Retrieval: Adaptive retrieval dynamically ad-
justs the retrieval strategy based on the query or task re-
quirements. A representative method (Algorithm [3) is MBA-
RAG [27], using a multi-armed bandit model to select the best



JOURNAL OF KIEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

Algorithm 2 Iterative Retrieval using ReAct
Require: Query ¢, maximum iterations N, language model
M, retriever R
Ensure: Final answer based on retrieval and reasoning
1: Initialize context «+ ||
2: for i =1to N do
3: thought < M reason(q, context)
chain-of-thought

> Generate a

4 if M.decide_stop(thought) then

5: break

6: end if

7: new_query < M.generate_query(thought) >
Generate a new sub-query

8: results < R.retrieve(new_query)

9: Append results to context

10: end for

11: Use the final context and chain-of-thought to generate the

answer

Algorithm 4 Supportiveness-based Knowledge Rewriting

(SKR)

Require: Query ¢, retrieved documents D =
{dy,da,...,d,}, rewriting model T, supportiveness
evaluator F, threshold 7

Ensure: Rewritten knowledge set D’

1. D'« 0

2: for each document d € D do

3: r < T.rewrite(d, ¢) > Generate a rewritten version of
d using the query ¢

4: s < E.score(q, )
score of r for query ¢

> Compute the supportiveness

5 if s > 7 then

6: D'+ D'U{r}
7 else

8: Discard r

9: end if

10: end for

11: return D’

Algorithm 3 Adaptive Retrieval with Multi-Armed Bandit
Require: Query ¢, a set of retrieval
{My, My, ..., My}, policy selector Policy
Ensure: Retrieval result R
1: i < Policy.select(q)
query features
R < M;.retrieve(q)
Obtain feedback (e.g., accuracy, cost)
Update Policy using the feedback
return R

modules

> Choose a module based on

retrieval module (e.g., BM25, DPR, or multi-hop retrieval) for
a given query. The model learns from feedback to balance be-
tween different strategies, improving efficiency and accuracy.

4) Post-retrieval Optimization: Post-retrieval augmentation
enhances retrieved result quality and includes two subtypes:
Rewriting and Re-ranking.

Rewriting methods refine retrieved documents to better align
them with the needs of the generation model. For example,
SKR (Supportiveness-based Knowledge Rewriting in Algo-
rithm [) [29] condenses each document by filtering out noise
and retaining only the content that most effectively supports
the query. This yields more concise and focused documents for
downstream generation. Other rewriting approaches not only
include extractive filtering and multi-document summarization
but also extend to prompt compression techniques, since the
retrieved documents are used as prompts for the generation
model, compressing them can be seen as a form of rewriting.
For instance, the Gist algorithm compresses lengthy prompts
into a compact set of “gist” tokens that encapsulate the core
information with minimal redundancy [48]]. AutoCompressors
transform extended context documents into concise summary
vectors that serve as soft prompts, ensuring that only the most
relevant content is passed to the generation model [49].

Re-ranking methods use a more detailed matching model
to re-order the initially retrieved documents. A very classic
approach is PageRank, which assigns a numerical value to
each web page based on the quantity and quality of links

pointing to it, thereby measuring its relative importance on the
web [50]. Recently, a widely used re-ranking method is called
the BERT-based Passage Re-ranking model, where a cross-
encoder model (e.g., BERT) computes a relevance score for
each candidate document by concatenating the query with the
document and then reorders them based on these scores [28]].
BERT-based Passage Re-ranking employs a Cross-Encoder
architecture where a query and a candidate passage are jointly
encoded by a BERT model. Given a query (denoted as input)
and a candidate passage d, the model first constructs a single
input sequence by concatenating them with special tokens,
e.g., “[CLS]input [SEP] d [SEP]”. Due to length constraints,
the query is truncated to at most 64 tokens and the passage is
truncated so that the overall sequence length does not exceed
512 tokens. The concatenated sequence is then fed into BERT
to produce contextualized representations. The output (hicysy),
corresponding to the [CLS] token, is used to compute the
relevance score via a classification layer:

fo (input, d) = U(W - hycLs) + b), 37

where W € RH and b € R are the trainable parameters
(collectively denoted by p) of the classification layer; o(-) is
the sigmoid activation function; H is the hidden dimension
of BERT; f,(input,d) € [0,1] represents the probability that
passage d is relevant to the query. For a set of candidate
passages C, the re-ranking is performed by computing the
relevance score for each passage:

sq = fp(input,d), VdeC, (38)

and sorting the passages in descending order of s4 to select
the top-N passages. The model is trained using the binary
cross-entropy loss defined over the candidate set:

L= _Z [yd log f,(input, d)+(1~ya) log (1 f,(input, d))] ,

deC
(39)
where y4 = 1 if d is relevant to the query, otherwise y4 = 0.
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TABLE I
THE COMPARISON OF DIFFERENT RETRIEVAL METHODS.

Method Advantages and Disadvantages
o Pro: Simple and fast with low computational over-
g ,5 head. Interpretable results. No training required.
(,Qf‘;:) Cons: Weak in capturing semantics. Sensitive to
~  lexical variations. Ineffective for complex queries.
° E Pros: Strong semantic understanding. Good general-
Z © ization across tasks. Supports end-to-end training.
A £ Cons: High training and inference cost. Low inter-
~ pretability. May require domain-specific fine-tuning.
£ = Pros: Explicit index is not required. Flexible and
— s .§ end-to-end. Integrates well with generation models.
3 2 8  Cons: Hard to interpret and trace. Susceptible to
E G~ generation errors. Less scalable for large corpora.
g - E Pros: Capture structured relationships. Multi-hop
£ = 5 reasoning. Integrate knowledge graphs effectively.
= 5 £ Cons: High graph construction and inference cost.
~ Complex pipeline setup. Sensitive to graph quality.
5 —  Pros: Support cross-modal search. Aligns different
g & modalities in shared space. Multimedia capability.
= £ Cons: Large-scale multimodal data dependency.
§ & Complex alignment and fusion of modalities.
_ Pros: Combine strengths of different retrieval
] % paradigms. More robust across query types. Flexible
2 °F integration for diverse tasks.
T 2 Cons: Fusion strategies are hard to tune. Increased
computational cost. Higher system complexity.
v 3 Pros: Multi—~ste‘p reasqning. Refine results step-by-
=] ,9‘:) step. Dynamic interaction.
8 5 Cons: Slower inference due to iterations. Susceptible
T reasoning drift. Error propagation.
2 = Pros: Dynamic retrieval strategy. Resource-efficient
= "a@ in multitask scenarios. Heterogeneous inputs.
@ < E .. . . . .
2 2 % Cons: Sophisticated policy learning. High imple-
g & mentation complexity. Unseen task generalization.
2 & Pros: Remarkable precision enhancement. Exploit
4, '@ deep contextual representations.
& & Cons: High computational cost. Dependent on initial
M retrieval quality. Slower response time.
%  Pros: Refine input for downstream generation. Long-
&2 context compression. Irrelevant or redundant text
~ £ removal.
#  Cons: Key information missing. Error propagation.
C. Summary

Table [I] provides a structured summary of current retrieval
strategies, categorized into fundamental methods and advanced
techniques. Among the fundamental methods, sparse retrieval
remains useful for traditional information retrieval tasks due
to its simplicity, efficiency, and lack of training require-
ments [51]. However, its reliance on exact lexical matching
makes it inadequate for capturing deep semantic meaning,
limiting its effectiveness for complex natural language queries.
In contrast, dense retrieval leverages learned semantic embed-
dings to better model user intent, making it well-suited for
tasks like open-domain question answering [52], albeit with
significantly higher training and inference costs. Generative
retrieval eliminates the need for explicit indexing by retrieving
directly through generation, offering end-to-end flexibility,
particularly in entity linking and small-scale corpora [53].
Yet, its lack of interpretability and susceptibility to generation
errors pose notable challenges. Graph-based retrieval models
entity relationships via knowledge graphs, enabling multi-hop
reasoning and structured inference [54], which are especially
beneficial in domains like scientific QA and biomedical appli-

cations. However, the cost of graph construction and reasoning
limits its scalability. Multimodal retrieval, which supports
queries across different modalities, is critical for multimedia
applications [55], but aligning and training across modalities
remains a significant challenge.

Among advanced methods, hybrid retrieval integrates the
strengths of multiple paradigms, such as sparse and dense
retrieval, resulting in greater robustness across diverse queries.
Nevertheless, the fusion strategy can be difficult to tune and
optimize. Iterative retrieval enables step-by-step refinement
via multi-turn reasoning, improving performance on com-
plex tasks such as multi-hop QA. However, it often incurs
longer inference time and may suffer from reasoning drift.
Adaptive retrieval dynamically selects the optimal strategy
for each query, enhancing resource efficiency in multi-task
and resource-constrained settings. However, it requires so-
phisticated policy learning and may struggle to generalize to
unseen queries. Re-ranking serves as a powerful post-retrieval
step that significantly improves precision by applying deep
semantic models to a small set of retrieved candidates, though
it introduces additional computational overhead and latency.
Rewriting, on the other hand, preprocesses and restructures
long documents to facilitate downstream generation, which is
especially valuable for compressing lengthy contexts. How-
ever, it carries the risk of information loss and semantic drift
during transformation.

Overall, each retrieval method presents unique strengths
and limitations. Practical deployment requires careful con-
sideration of application requirements, task complexity, and
computational constraints.

IV. GENERATION ALGORITHMS

Within the RAG framework, the generator produces target
content conditioned on the input and the retrieved contextual
information. Existing generation methods are categorized into
two complementary paradigms, namely fundamental genera-
tion methods and advanced generation Methods.

Fundamental generation approaches establish core prob-
abilistic frameworks, encompassing three main categories.
Encoder-decoder models, such as Transformer [30], TS5 [42],
and BART [31]], combine bidirectional encoding with autore-
gressive decoding. Decoder-only models, including GPT [12],
(32, 1561, 571, 158, PaLM [33], LLama [59], [60], [611,
Mixtral [62]], and DeepSeek [35], [63], [64], [63], gener-
ate sequences token-by-token via chain rule decomposition.
Lastly, diffusion models, such as DDPM [34] and LDMs [66],
reconstruct data through iterative denoising over 7' steps,
typically represented as x;—1 = f (X, €g(X¢,1)).

Advanced generation methods improve output quality
through algorithmic innovations. One prominent direction is
reasoning-based generation, exemplified by CoT [l1] and
True-of-Thought (ToT) [67], which guide models to produce
intermediate reasoning steps, thereby emulating human-like
sequential problem solving prior to generating a final response.
Another line of work leverages RL, either through alignment
with human feedback, as in Instruct-GPT [12], or by optimiz-
ing predefined reward functions, as in DeepSeek-R1 [35], to
progressively enhance model reasoning ability and coherence.
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A. Fundamental Generation Methods

1) Encoder-Decoder Models: This is a fundamental
paradigm in natural language generation tasks. The core idea
is to encode the input sequence and relevant information into
a continuous representation using an encoder, followed by a
decoder that generates the target sequence step by step.

Early neural network-based sequence generation tasks pri-
marily relied on sequence-to-sequence (Seq2Seq) [68] ar-
chitectures and recurrent neural networks (RNNs), including
Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) [69] models. RNN-based seq2seq models process
input sequences recursively and generate output sequences
step by step, effectively capturing temporal dependencies.
However, due to their inherently sequential nature, they suffer
from poor parallelizability and struggle to model long-range
dependencies, leading to gradient vanishing issues in long
sequences. To mitigate the inefficiencies of RNNs, Convo-
lutional Neural Networks (CNNs) [70] were introduced as
an alternative. ConvS2S [71] replaces recurrent units with
convolutional layers, enabling parallel processing and improv-
ing computational efficiency. By stacking multiple convolu-
tional layers, these models gradually expand their receptive
fields to capture longer-range dependencies. While these early
models provided a foundation for sequence generation, their
limitations in parallelization and long-range dependency mod-
eling motivated further advancements in architecture design.
These challenges ultimately led to the development of the
Transformer model [30]], which fully eliminates recurrence
and convolution, achieving both efficient parallel computation
and improved dependency modeling. The Transformer model
is an attention-based Encoder-Decoder structure that captures
long-range dependencies and eliminates the computational
constraints of traditional RNNs and CNNs. The elemental
computing unit of the Transformer model is the multi-head
attention mechanism that can capture long-range dependencies
in parallel, allowing for richer contextual representations, and
significantly accelerating training compared to the sequential
nature of RNNs.

In RAG, the input is first constructed by concatenating
the query and the top-K retrieved documents: input; =
[query; Document 1;. . .; Document K]. The goal of the model
is to generate an answer. We obtain the encoder output as:
henc = Encoder(input ;). The generation probability is defined
as:

N

Do (output | inputd) = Hpe (OUtPUti | henc, OUtp]-Itl:ifl)'

=1 (40)
At each decoding step i, the model predicts the next token
output, conditioned on the encoded input A, and the previ-
ously generated tokens output;.,_;.
The training objective minimizes negative log-likelihood:

L = —log pg(output | input,). 41)

This objective is optimized using teacher-forcing, where the
ground-truth prefix is provided during training.

In recent years, encoder-decoder generators are commonly
based on pre-trained language models. This is because pre-

trained language models offer strong generalization capabili-
ties and rich linguistic knowledge, which significantly enhance
the quality of generated outputs when conditioned on retrieved
context. Widely used encoder-decoder pre-trained language
models include T5, and BART. The T5 (Text-to-Text Transfer
Transformer) model unifies all tasks into a text-to-text format,
enabling cross-task transfer learning. The BART (Bidirec-
tional and Auto-Regressive Transformers) model combines
the strengths of bidirectional encoders and autoregressive de-
coders. Through sequence reconstruction pre-training, BART
excels in tasks like text generation and summarization.

2) Decoder-Only Models: Decoder-Only models do not use
a separate encoder. Instead, they process the input and output
as a single concatenated sequence. At each generation step, the
model uses masked self-attention to access only the input,; and
previously generated tokens.

The generation probability is formulated as:

N
pe(output | input,) = Hpe(outputl- | input, output, ;).

i=1 (42)
At each step 4, the decoder predicts output, based on input,
and output,., ,, using a stack of masked self-attention layers.

The training objective is similar to the encoder-decoder
case (see Equation (#I)), using teacher-forcing by feeding the
ground-truth prefix to the decoder. Through stacked decoder
layers, it models the conditional probability in an end-to-end
manner. As both Encoder-Decoder and Decoder-Only mod-
els follow the autoregressive generation paradigm. However,
given the power of LLMs, fine-tuning a Decoder-Only LLM
for RAG is not an indispensable process. By reformatting
diverse tasks, e.g., text classification as generating class labels,
question answering as generating answer text, into a unified
sequence-to-sequence paradigm, it achieves versatility across
NLP applications. The ability of the Decoder-Only architecture
to model both input and generated sequences in a unified
manner has established it as the mainstream choice for LLMs.

3) Diffusion Models: Diffusion models [72], [66], [73],
[74], [Z30, [7Z6l, [77], [Z8], [79] are a class of generative
methods that create data by gradually turning random noise
into meaningful outputs. They follow a step-by-step denoising
process, learning to recover data from noise through repeated
refinement. They use two key processes: a forward process
that adds Gaussian noise to the data over many steps, and
a reverse process that learns how to remove this noise and
restore the original input. Unlike autoregressive models, which
produce data one part at a time based on earlier outputs,
diffusion models generate the whole sample at once. They
operate in continuous spaces and improve the full structure of
the data in parallel. This approach makes diffusion models
effective at generating high-quality signals such as images
and audio. Foundational models such as Denoising Diffusion
Probabilistic Models (DDPM) have built the theoretical base
for later improvements [34]).

DDPMs are a class of generative models based on Markov
chains, as shown in Algorithm [5} They first use a set of prede-
fined variance schedules {f3;} to progressively add Gaussian
noise to clean data xy in closed form (forward diffusion);
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Algorithm 5 DDPM Training and Sampling

Algorithm 6 CoT Predict

Require: Clean data set X = {z¢}, diffusion steps 7,
variance schedule {Bt}le, noise-prediction network ey
Ensure: Trained noise predictor ep; sampling procedure to
generate new data
1: procedure TRAINDDPM(X, T\, {5}, €9)
2 Precompute schedules: oy < 1 — 3, ap + [[._; s
3 for each minibatch zg € X do
4: Sample timestep ¢ ~ Uniform{1,...,T}
5 Sample noise € ~ N(0, )
6 Construct noisy example:

Ty — Vo xryg + V1—aye

7: Predict noise: € < €g(xy, t)
8: Compute loss: L < |e — €2
9: Update 6 via backprop on L
10: end for

11: return trained ¢y

12: end procedure
13: procedure SAMPLEDDPM(eq, T', {5;})

14: Precompute schedules as above
15:  Initialize 27 ~ N(0,1)
16: fort=T,T—-1, ..., 1do
17: Predict noise: € « eg(a, t)
18: Sample z ~ N(0,1) if t > 1, else z < 0
19: Denoising update:
1 Bt A>
R — €|+

Ti—1 N (It me Btz
20: end for
21: return zo > Generated sample

22: end procedure

then, they train a neural network ey (z;, ) to predict the noise
and minimize the mean squared error between the prediction
and the true noise (reverse denoising). In the sampling phase,
starting from pure noise z7 ~ N(0, I), the network iteratively
denoises in reverse order, eventually recovering high-quality
samples x(. This “fixed noise injection + learned denoising”
approach has demonstrated excellent results in image genera-
tion tasks.

The strength of diffusion models lies in their globally
coherent generation via iterative refinement, which avoids
the autoregressive error accumulation seen in Decoder-Only
models. By modeling data distributions via gradual denoising,
rather than token-by-token prediction, they achieve superior
performance in continuous signal generation (e.g., images,
audio) [80N, [81], [82], [83]], [84] and offer inherent stability
during training, circumventing mode collapse issues of GANS.

B. Advanced Generation Methods

1) Reasoning Generation: Reasoning generation refers to
the process in which a model produces a sequence of in-
termediate logical steps prior to arriving at a final answer.
The underlying principle is that, for complex tasks, the model
should not rely solely on direct input-to-output mapping.

Require: Model model, Query ¢, examples examples
Ensure: Output containing the chain-of-thought and final
answer
1: prompt <

2: for all ex € examples do
prompt < prompt+ "Q: " 4+ ex.q + "\nA: "

+ ex.chain + " The answer is " + ex.answer +
"\1’1\1’1"

: end for

. prompt < prompt+ "Q: " + g+ "\nA: "

. output < model.generate(prompt)

: return output

79

N N L b

Rather, it should emulate human-like step-by-step thinking,
progressively narrowing the solution space and enhancing
answer accuracy through structured intermediate inferences.
CoT [11] is a representative technique in this domain, which
effectively avoids the high data cost of pure supervised reason-
ing methods [85] and the weakness of standard prompting [86]]
on complex reasoning tasks. The core idea of CoT is to break
down the problem gradually during the reasoning process. The
model, following the given prompt, first produces a series of
intermediate reasoning steps, and then gives the final answer.
Algorithm [ is a pseudocode example that demonstrates how
to apply the CoT method in an LLM to solve a problem.
The procedure begins by constructing a few-shot prompt that
includes multiple examples, each comprising a question, a
corresponding reasoning process, and a final answer. A new
question is then appended to this prompt, and the model
is prompted to generate a complete response. The expected
output includes both the intermediate reasoning steps and the
final answer. This few-shot prompting strategy represents a
standard implementation of the CoT approach.

Although CoT significantly improves reasoning, a single
reasoning path may sometimes lead to random biases or
errors. Self-consistency [87] is an extension and improvement
of CoT. Instead of relying on a single generated reasoning
chain, a self-consistency model generates multiple reasoning
chains and then compares the answers obtained from these
chains. The most consistent answer is chosen as the final
result. Algorithm [/ is a pseudocode example that demon-
strates the self-consistency reasoning process. Given a model
CoT_model capable of performing CoT reasoning through
few-shot prompting, the method generates multiple candidate
outputs via sampling and selects the final answer based on a
majority vote among the sampled responses. In Algorithm
the function CoT_model.generate is invoked using a
sampling-based decoding strategy (e.g., temperature sampling)
to produce diverse reasoning paths across multiple runs. The
final answer is extracted from each generated output and ag-
gregated. After collecting a predefined number of samples, the
frequency of each distinct answer is computed, and the most
frequently occurring answer is selected, thereby implementing
a majority voting mechanism.

In LLM reasoning, several methodologies have been de-
veloped to enhance models’ capabilities by decomposing
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Algorithm 7 Self-Consistent Predict
Require: CoT model C'oT_model, Query g, number of sam-
ples num_samples
Ensure: Final answer chosen by majority vote
1: answers < ||
2: for ¢ =1 to num_samples do
3 output < CoT_model.generate(q,
4 decoding = "sample")
5 answer < Extract the final answer from output
6: Append answer to answers
7
8
9

: end for
. final_answer < arg max(Counter(answers))
: return final_answer

complex problems into intermediate steps, thereby improv-
ing both accuracy and interpretability. ToT [67] generalizes
CoT by allowing models to explore multiple reasoning paths
simultaneously, forming a tree-like structure. Least-to-Most
Prompting [88] involves breaking down a complex problem
into a sequence of subproblems arranged from the simplest to
the most challenging. The model addresses each subproblem
in order, using the solution of one as the foundation for the
next. Zero-Shot CoT [89] enhances reasoning by appending
a simple prompt such as “Let’s think step by step” to the
query. This minimalistic cue encourages the model to generate
intermediate reasoning steps, thereby improving performance
on tasks without requiring extensive prompt engineering.
Program-of-Thought (PoT) [90] translates the reasoning pro-
cess into a series of programming-like instructions, leveraging
the structured nature of code to enforce logical consistency and
precision. By framing problems in a programmatic context,
models can execute complex operations systematically, which
is advantageous for tasks involving mathematical computations
and formal logic. Graph-of-Thoughts (GoT) [91] represents the
problem-solving process as a directed acyclic graph, where
nodes denote reasoning steps and edges represent dependen-
cies. Collectively, these methods build upon the foundational
principles of CoT prompting, each introducing unique struc-
tural modifications to guide models through intricate reasoning
tasks. By systematically decomposing problems and exploring
diverse solution pathways, these approaches significantly en-
hance the problem-solving capabilities of LLMs.

2) RL-Augmented Generation: RL-Augmented Generation
enhances the quality of generator outputs through RL op-
timization [92], [93]], [94], [95]. Its core paradigms can be
divided into two categories: a) RLHF and b) Rule-based RL.

a) RLHF: 1t trains a reward model using human prefer-
ence data and optimizes the language model with policy gra-
dient algorithms. A representative method is InstructGPT [12].
Given a prompt input, and two candidate completions output,,
(preferred by human annotators) and output,; (less preferred),
the reward model R, (input, output) is trained to assign higher
scores to preferred outputs. To achieve this, the model esti-
mates the probability that humans would favor output,, over

output, using a sigmoid over the reward difference:

P, (output,, > output, | input) = o (R (input, @)
output,,) — Ry (input, output,))

The reward model is optimized by minimizing the binary

cross-entropy loss over a dataset of human comparisons

Lrm = _E(inpm,omputw Loutput; )~ D [ logo (R¢7 (iHPUta

44
output,,) — Ry (input, output;))]. e

Then, the policy 7y is fine-tuned to maximize the expected
reward assigned by the learned reward model. To prevent
excessive divergence from the initial supervised policy mycf,
a KL divergence penalty is added:

max ]EinpulND, output~g (-|input) [R¢ (iHPUta OUtPUt)] -
i 45)

B Dxw [mo(- | input) || myee (- | input)]
where [ is a hyperparameter controlling the strength of
the regularization. This stage is typically implemented using
Proximal Policy Optimization (PPO) [59].

b) Rule-based RL: 1t constructs a reward function using
predefined rules instead of learned neural models. A repre-
sentative model is DeepSeek-R1, which applies rule-based
rewards and Group Relative Policy Optimization (GRPO)
to improve reasoning capabilities. Given an input and a
generated output, the total reward R(input, output) consists
of three components:

R(input, output) = Reorrect(0utput) + Riormar (Output)-+ 46
Ryang (input, output), )
where Reorect () measures answer correctness, such as whether
a math solution is accurate; Riomma(-) ensures the rea-
soning process is enclosed in <think>...</think> tags;
Ryang (input, output) checks that the output uses the same lan-
guage as the input, reducing language mixing. These rewards
are derived purely from deterministic rules, avoiding the use
of neural reward models. Then, to optimize the language
model policy 7y (output | input), DeepSeek-R1 uses GRPO,
calculating a normalized advantage (A) for each sampled
output in a group of size G:

i —mean({ry,...,rg})
Std({’fl, . ,Tg})

where r; is the total reward of the ¢-th sampled output. The
objective function incorporates a clipped policy ratio and a KL
divergence regularization to prevent deviation from a reference
policy 7yef:

< tput, | input)

chip( mo(output; | inpu Ai)l _

o o, (output; | input) (48)

BDxw [mo(- | input) | met(- [ input)],

A== : (47)

J(0) =E

where (3 controls the KL penalty strength.

Compared to RLHF, which uses learned neural reward
models, this approach relies entirely on rule-based signals,
improving training stability and avoiding reward hacking is-
sues. Some systems (including elements in GPT-4’s safety
alignment strategy) integrate rule-based reward components
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TABLE II
THE COMPARISON OF DIFFERENT GENERATION METHODS.

TABLE III
RAG APPLICATION DOMAINS AND RELATED WORKS.

Method Advantages and Disadvantages Applications Related Work
D Pros: Clear separation of encoding and decoding. Open-Domain QA Lel, (260, (98], [99], [100], [101], [102],
_§ 2 Good for conditional generation and multitask learn- (general [103], [104], [105], [106], [107], [108], [L09],
S § ing. Accurately incorporates input context. knowledge) [110], [LLL], (112f), [113], [114], [L15], [L16],
52 Cons: High training and inference cost. Slower gen- (1170, (118], [119], (1200, [121], [122], [123],
eration speed. Complex architecture and tuning. [124], [125], [126], [127], [128], [129], [130],
Pros: Flexible autoregressive generation. Strong lan- [131], [132]
= & guage modeling through pretraining. Simple archi- Knowledge- [101], [LO9], [116], [117], [124], [127],
% 3 E‘ tecture for fine-tuning. Grounded [128], [133], [134], [135], [136]
g 8 O Cons: No explicit encoder limits input structure Dialogue
-§ A handling. Weak performance on long or structured Mathematical & 198, (991, [108], [115], [118], [130], [132],
g inputs. Error accumulation in generation. Logical Reasoning [137]
Pros: Highly diverse and controllable generation. Medical Domain [127], [130], [131], [138], [139], [140],
§ » Excellent in mgltimodal content synthesis. Flexible Applications (1411, [142), [143]), [144]
‘28 style and variation control. Legal Analysis & [134], [143], [146], [147], [148], [149]
= Eo Cons: Slow inference due to iterative denoising. Less QA
A mature for text generation. High training complexity Scientific Research (121, [IT4], (1310, [133], [134], [138],
and resource demand. ‘ _ & Education [150], (1511, [152]
- Pros: Enhances logical reasoning ability. Decom- Fact-Checking & 161, 1261, 1981, 1991, [100], [101], 1103,
& & poses complex problems into steps. Improves the Verification [T04], (105, [106], [107], [109], [L10], (111,
5§ &  explainability of outputs. (1121, (1131, [114], (1151, [116], [117], [118],
é :cj Cons: Generates longer and sometimes redundant [T19), [i21), [@22), [123], [124), [127], [130],
= ~ O outputs. Harder to control stepwise reasoning. In- [131], (1330, [138], [133], [152]
g creased implememation .and tuning complexity. Multimodal [L10], [1210, 122, [140], [154], [155],
_‘5 Pros: Aligns outputs with user preferences or task Generation with [156], [157], (158], [159]
= goals. Improves control and safety of generation. Retrieval Support

Allows reward-based fine-grained supervision.
Cons: Requires complex reward design. Often de-
pends on human feedback. Computationally expen-
sive and less stable to train.

RL-based
Generation

to ensure outputs adhere to predefined guidelines. Such Rule-
Based Reward (RBR) mechanisms offer a computationally
efficient means to enforce specific behavior patterns without
extensive human feedback [58]].

C. Summary

Table [l| summarizes current generation paradigms, catego-
rized into fundamental and advanced methods.

Among the fundamental approaches, encoder-decoder mod-
els offer a clear architectural separation between input en-
coding and output decoding, which is especially beneficial
for conditional generation tasks such as summarization or
grounded response generation. Their ability to integrate input
context effectively supports multitask learning. However, the
two-stage structure results in higher training and inference
costs, and introduces architectural complexity. In contrast,
decoder-only models rely on flexible autoregressive generation
and benefit significantly from large-scale pretraining. These
models are well-suited for open-ended generation tasks and
creative writing. Nevertheless, the lack of an explicit encoder
limits their capacity to handle long or structured inputs, and
they are prone to error accumulation during generation. Dif-
fusion models, originally developed for image synthesis, have
recently been extended to multimodal generation scenarios.
These models offer controllable and highly diverse outputs,
making them valuable for image-text generation and creative
content creation. However, their iterative denoising process
incurs high inference latency, and their application to text
generation remains relatively immature and resource-intensive.

[160], [161], [162], [163], [164], [165],
[166], [167], [168], [169], [170]

Code Assistants

Among advanced methods, reasoning-based generation ex-
plicitly guides models to decompose complex problems into
intermediate reasoning steps. This significantly enhances per-
formance in mathematical and logical reasoning tasks and im-
proves the interpretability of outputs [96]. Yet, these methods
often produce verbose outputs and are harder to control, which
may hinder usability in real-world applications [97]. RL-based
generation approaches introduce learning signals via human
feedback or task-specific reward functions. These methods
can effectively align model behavior with desired objectives
such as safety, informativeness, or user preference. However,
they require well-designed reward functions and high-quality
training signals, which increase development complexity and
computational cost.

V. APPLICATIONS

In this section, we present an overview of the major appli-
cation domains of RAG, along with representative works in
each domain. To provide a structured perspective, we further
organize existing studies by mapping them into a method-
wise matrix, where each entry corresponds to a specific
combination of the aforementioned retrieval and generation
strategies. This matrix captures how different combinations of
retrieval and generation methods have been employed across
various application settings. Finally, we summarize the state-
of-the-art models for each domain to provide a comprehensive
view of RAG’s practical performance and deployment.

A. RAG Application Domains

Table [l1I| provides a structured overview of the application
domains for RAG, along with representative related works.
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Open-Domain QA (General Knowledge): This domain
focuses on answering broad, fact-based questions using
vast open-domain resources such as the Natural Questions
dataset [171]]. Due to the availability of rich data and the inher-
ently open-ended nature of the queries, a significant volume of
research has been dedicated to this area. Researchers benefit
from RAG’s capability to complement generation models with
robust retrieval modules, enabling high-accuracy responses.
Knowledge-Grounded Dialogue: To yield responses that are
well-supported by external knowledge, studies in this area use
background information to generate coherent and contextually
enriched dialogues [172]]. The challenge lies in balancing
retrieval latency with the need for conversational fluency.
Mathematical & Logical Reasoning: Applications in this
domain require systems to execute multi-step reasoning and
deliver precise answers with reasonable references. Due to the
complexity of these tasks, the available research is relatively
limited. However, when combined with specialized reasoning
generation methods, RAG helps in decomposing complex
problems into manageable steps.

Medical Domain Applications: Given the critical nature
of medical information, RAG methods in this domain must
achieve high accuracy and reliability [173]. The specialized
datasets, e.g., PubMedQA [174], and the rigorous demands
for safety naturally limit the volume of research, driving a
focus on methods that ensure precision and domain-specific
adaptation.

Legal Analysis & QA: The legal domain presents unique
challenges for retrieval systems due to its requirement for fine-
grained semantic understanding and precise matching of legal
texts. While research in this area remains relatively limited, it
typically emphasizes accuracy and interpretability, frequently
employing retrieval strategies tailored to legal content.
Scientific Research & Education: This area aims at facilitat-
ing the extraction and summarization of scientific knowledge,
where the integration of retrieval and generation is critical. The
diversity of tasks in this domain explains the moderate level
of research activity and underscores the need for multi-task
and multi-domain learning approaches.

Fact-Checking & Verification: This domain is highly active,
as accurate fact-checking is crucial for ensuring information
reliability. In this context, RAG methods are tasked with
mining relevant evidence from extensive knowledge bases, as
reflected by the large number of related works. The challenge
remains in preventing the propagation of retrieval errors into
the final generated response.

Multimodal Generation with Retrieval Support: Address-
ing both textual and visual information, this domain leverages
RAG’s ability to handle cross-modal data. Despite the inher-
ent complexity in aligning different modalities, the potential
applications, such as image-based question answering, offer
significant promise for future research.

Code Assistants: As a relatively new area, code generation
systems augmented with retrieval show potential in enhancing
code completion and error correction. However, the number
of RAG-based studies is currently limited, probably because
the integration of retrieval into code generation poses unique
challenges. These include aligning natural language queries

with relevant code snippets, retrieving functionally correct yet
syntactically diverse examples, and effectively conditioning
generation models on retrieved code under strict syntax and
semantic constraints. The lack of large-scale, high-quality
retrieval-augmented datasets for code further limits progress.

RAG’s core advantage lies in its ability to mitigate the
limitations of standalone generation models by incorporating a
retrieval module to supplement factual knowledge and context.
As shown in Tables [I] and each retrieval method and
generation model possesses distinct strengths and weaknesses.
For instance, in Open-Domain QA, where diverse and up-
to-date knowledge is essential, the high recall capability of
dense or hybrid retrieval methods, combined with the robust
language modeling power of encoder-decoder frameworks,
leads to effective performance. Conversely, in domains such
as Mathematical & Logical Reasoning, the precise multi-step
reasoning process is critical. Therefore, integrating specialized
reasoning generation techniques becomes necessary, despite
the challenges of managing longer and more complex outputs.
Similarly, in safety-critical fields like Medicine and Law, the
balance between retrieval precision and generation reliability is
paramount. Here, targeted retrieval strategies that are tailored
to domain-specific vocabularies and structured documents are
essential, while the generation component must be fine-tuned
to ensure adherence to factual and contextual integrity.

B. Retrieval and Generation Technique Applications

Table [[V] provides a structured summary of representative
RAG applications, categorized by retrieval-generation com-
binations. It highlights which combinations are most widely
studied and which are underexplored, offering insights into
current research trends and design preferences across different
application domains. We observe that Sparse Retrieval and
Dense Retrieval dominate the landscape across nearly all
generation modules, showing a significantly higher concen-
tration of studies. This can be attributed to their maturity
and accessibility: Sparse methods are simple, interpretable,
and often serve as the backbone for widely used web search
engines. This ubiquity in real-world applications makes Sparse
Retrieval the default option in many research works, particu-
larly in open-domain QA, dialogue systems, or fact-checking
scenarios, where search engine APIs are used as retrieval
modules. Dense Retrieval, by contrast, offers superior semantic
matching and generalization, making it more suitable for
complex tasks requiring deeper understanding, such as multi-
hop reasoning, domain-specific QA, or retrieval from noisy
corpora. Generative Retrieval appears less frequently in the
literature (many cells marked as “NA”), and this scarcity
can be explained by two factors: Generative retrievers tend
to be more error-prone and lack interpretability; Generative
Retrieval is used to directly generate answers from queries
without the need for a separate generation module. This
“retrieval-as-generation” paradigm makes traditional generator
pairing unnecessary. Other retrieval methods, such as Graph,
Multimodal, Hybrid, Adaptive, and Iterative Retrieval, have
emerged more recently and tend to appear in more specialized
tasks. For instance, Graph Retrieval is often used in scientific
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TABLE IV
THE SUMMARY RAG APPLICATIONS BY DIFFERENT RETRIEVAL AND GENERATION METHODS. DIFF. DENOTES DIFFUSION MODELS.

Generator  Encoder- Decoder-Only Diff. Reasoning Generation RL-Augmented
Retriever Decoder Generation
126], (98], [99], [103], (1051, [LL1], [Li2], [103], {1057, (L1,
S _ (98], 11021, (116], [119], [120], [127], [133), (137, fe6l. 1981, DO 1LL2) (1) f11e), (1101,
parse Retrieval [116], [123], [156] [123], [127], [133],
(241, [l [138),, [T42], [144), (151, [153], [160], [0, (381, (53 (1201, (1371, [142),
’ (1641, [165], [166], (1671 ’ ’ [144], [160]
16], 11007, [T01], (1047, [106], [107], [108], [LI0], [I01], [106], 11071,
[102], (114, [L12), (1131, [L14), (1151, [L16], (L7l (121, [113], (L1151, (1011, [106], [112],
[I16], [TT71, [T18), (1271, [130), (131, [132), [133], [154), [I18), [122), (1271, [T14), (115, [116),
Dense Retrieval (210, (1221, [34), [135], [138], [139], [141], [146], [155], [132], [133], [133], (L8], [132], [133],
[124), [128], [47),, [T48], [149], (1501, [152), [1531, [156] [138], (1391, [146], [138], [139], [146),
(1571, (1611, (1601, [162], [163], [164], [163], (168, (1501, (1521, (1531, (1521, [160], [168]
[164), [169] (170} (701
Generative Retrieval NA [136], [153] NA [153]] NA
, . [107], (1121, [129], (1351, [139], (1431, [I071, 11121, 11351, 10121, (1351, 11391,
Graph Retrieval [109] (146] NA [139], [146] [146]
. {1211, 11221,
Multimodal [154],
Retrioval [14?]1,5[81]57J, [L10), [159] o] (1221, [156] [140]
[I071, [LL12], 1127,
. . [T07), (1121, [127), (1291, [133], (1381,
Hybrid Retrieval (1021, [124] (500, T30, T30 NA (1331, [[113%]], [139], (121, [138], [139]
[26], 1981, [09], 1011,
i - (08, [123], 1261, [98], [99], [0, [106], (1071, [L13], [106], [107], (1131, [T01], [106], [I13],
Tterative Retrieval (128, [158] [T15), (118, [138), [163], [166), [168] NA [I13], [T18], (1231, [I18], [138], [168]
[138]
{140, (1211,
Adaptive Retrieval (1230, (1281, [TO8)l, (114, [131], [134], [149], [167] NA (23] [T14), [T40]
(140]
[O8], {1061, [107], 1106], (L1, [112],
. (O8], (106}, [107), (L1, (112}, [I13],
Post-Retrieval (00}, (102, [T5], [TT70, (18], [L09L. 2201, (i3, NA [L12], [L13], (151, (L15], [LL8], [L19],

Augmentation [117], [124]

[134], [135], [137], [138], [153]

[L18], [133], [135],
[137], [L138], [153]

[120], [135], [137],
[138]]

or biomedical domains where structured knowledge is crucial;
Multimodal Retrieval appears in vision-language applications;
and Hybrid or Adaptive methods are commonly introduced in
resource-constrained or multi-task settings.

In terms of generation modules, we also observe clear usage
patterns. First, Encoder-Decoder models are widely used,
especially in combination with Sparse or Dense Retrieval,
due to their structured conditional generation capability and
suitability for summarization, QA, and factual generation.
Then, Decoder-Only models are the foundation for open-ended
generation and creative writing, offering high flexibility and
transferability across tasks. Next, Diffusion Models are cur-
rently rare in text-only RAG but are emerging in multimodal
tasks, where they provide controllable, iterative denoising-
based generation. Next, Reasoning Generation applications are
commonly found in reasoning-heavy tasks such as math and
logical QA. Finally, RL-Augmented Generation applications
appear in scenarios where safety, alignment, or task-specific
preferences must be enforced.

By comparing Table [[V] with the retrieval method taxonomy
(Table [[), the generation method taxonomy (Table [, and
the RAG application landscape (Table [Il), we can iden-
tify several domain-level preferences. (1) Open-domain QA,
fact-checking, and knowledge-grounded dialogue favor Dense
or Hybrid Retrieval, often paired with Encoder-Decoder or
Decoder-Only models to balance factual grounding and flu-
ent generation. (2) Mathematical and logical reasoning tasks
require strong multi-step reasoning and factual traceability.

These tasks prefer Reasoning Generation models combined
with Dense or Graph Retrieval. Sparse methods are generally
less suited for such tasks due to their inability to capture
deep semantics and inferential relationships. (3) Medical and
legal domains demand accuracy and domain specificity, thus
combining Dense or Hybrid Retrieval with reliable generation
models. (4) Multimodal applications pair Multimodal Retrieval
with Diffusion Models or specialized Encoder-Decoder frame-
works capable of processing image and text inputs. (5) Code
generation typically involves retrieval of relevant snippets
(often using Sparse or Dense methods) paired with Decoder-
Only generation for autocomplete and task-specific generation.

C. RAG Performance Comparison on Benchmarks

To make a fair comparison between RAG and other tech-
niques, we have selected a few representative benchmarks in
major application domains. In Open-Domain QA, both the
state-of-the-art model and the best RAG model are Atlas [[100]
with an EM of 64.00, clearly demonstrating the effectiveness
of RAG in leveraging external knowledge for fact-based ques-
tion answering. Conversely, in domains such as Mathematical
& Logical Reasoning and Medical Domain Applications,
RAG does not achieve state-of-the-art performance. In the
Mathematical & Logical Reasoning domain, although PaLM
2 [L77] reaches an accuracy of 90.40, the best RAG model
reported (Rethinking with retrieval using GPT-3 [137]) only
achieves an accuracy of 77.73. The observed performance
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TABLE V
RAG APPLICATION DOMAINS, REPRESENTATIVE DATASETS, AND THE BEST PERFORMING MODELS. THE SOTA COLUMN INDICATES WHETHER RAG
METHODS ACHIEVED STATE-OF-THE-ART PERFORMANCE IN THE APPLICATION DOMAIN.

Application Domain Dataset SOTA SOTA Model Best RAG Model
Open-Domain QA Natural Yes Atlas [100] Atlas [100]
Questions [171] EM = 64.00 EM = 64.00
Fact-Checking & Verification KILT-FEVER [175] Yes Re2G [124] Re2G [124]
KILT-AC = 78.53 KILT-AC = 78.53
Knowledge-Grounded Dialogue KILT-Wizard of Yes Hindsight [128]] Hindsight [128]]
Wikipedia [175]] KILT-RL = 11.92 KILT-RL = 11.92
Mathematical & Logical StrategyQA [176] No PalLM 2 [177] Rethinking with retrieval (GPT-3)
Reasoning Accuracy = 90.40 [137]
Accuracy = 77.73
Medical Domain Applications PubMedQA [174] No Meditron-70B [178] RankRAG-1lama3-70B [127]
Accuracy = 81.60 Accuracy = =79.80
Scientific Research & Education MMLU [179], [180] No DeepSeek-R1 [35] Atlas [100]
Average Accuracy = 87.50 Average Accuracy = 47.90
Multimodal Generation with OK-VQA [181] No PalLI-X-VPD [182] FLMR [157]

Retrieval Support

Accuracy = 66.80 Accuracy = 62.08

gaps are likely due to the reasoning-intensive and domain-
specific nature of these tasks, which favors purely generative
models. These models, equipped with internalized reasoning
capabilities, are better suited to produce accurate outputs under
such conditions. Similarly, in the Medical Domain, while
Meditron-70B [178] (a non-RAG model) obtains an accuracy
of 81.60, the best RAG model (RankRAG-1lama3-70B [[127])
only reaches 79.80, indicating that current RAG approaches
may still struggle to fully integrate the complex, specialized
medical knowledge compared to dedicated generative systems.

Furthermore, the comparison reveals that differences in
retrieval strategy design play a critical role in performance
variation across domains. As reflected in our earlier summary
tables, systems adopting more advanced or better-aligned
retrieval-generation configurations tend to achieve higher ac-
curacy in tasks such as Open-Domain QA and Fact-Checking.
In contrast, for specialized domains like scientific research or
education, where the state-of-the-art models (e.g., DeepSeek-
R1) achieve much higher accuracy, the best RAG models still
lag behind (e.g., Atlas achieving only an average accuracy
of 47.90), suggesting that further optimization, particularly in
domain adaptation and retrieval integration, is needed.

In summary, while RAG frameworks have demonstrated
outstanding performance in certain areas (e.g., Open-Domain
QA, Fact-Checking, Knowledge-Grounded Dialogue), there
remain notable challenges in other domains. The challenges
include the effective integration of external retrieval with
generation modules, handling domain-specific complexities,
and achieving the same high performance as models that do
not rely on retrieval. Future research may focus on adaptive
retrieval-generation strategies, enhanced domain-specific mod-
eling, and improved calibration between retrieved evidence
and generated outputs to narrow these performance gaps.

VI. CONCLUSION

In this work, we propose a unified RAG framework built
around two core modules, namely the retrieval part and the
generation part. Within this framework, we formally sum-
marize representative algorithms for both fundamental and

advanced retrieval, as well as for fundamental and advanced
generation techniques, using precise mathematical definitions.
We also introduce the emerging use of diffusion models in
RAG, which are still less explored compared to autoregressive
generation methods. We then examine how modern RAG
systems select and combine different retrievers and generators
in practice, and provide a detailed comparison of their re-
spective types in terms of advantages and limitations. Finally,
by reviewing results on standard benchmark datasets across
various application scenarios, we highlight both the strengths
and remaining challenges of RAG in real-world settings.
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